
FlowVR :
A Middleware for High Performance Interactive Applications

http://flowvr.sf.net

INRIA, LIG
Grenoble, France

LIFO/Université d’Orléans
Orléans, France

Main Contributors:
Jeremie Allard, Jean-Denis Lesage, Antoine Vanel,

Valerie Gouranton, Sebastien Limet, Emmanuel Melin,
Matthijs Douze, Bruno Raffin, Sophie Robert,

Matthieu Dreher, Jeremy Jaussaud, Xavier Martin

March 23, 2020

http://flowvr.sf.net

Contents

I Getting Started 10

1 Setting up your environment 12

2 Using an existing application 13
2.1 Compiling and installing . 13
2.2 Generating the application network . 13
2.3 Local execution . 14
2.4 Distributed Execution . 15
2.5 Distributed Execution Over High-Performance Networks 16
2.6 Insitu . 16

2.6.1 Example . 16
2.6.2 Synchronisation of the insitu modules . 17
2.6.3 Visualisation on the dedicated core . 17

II Overview 19

3 Application Model 22
3.1 Module . 22
3.2 Filter . 23
3.3 Connection . 23

4 Typical uses 24
4.1 Usual synchronization policies . 24

4.1.1 Data-Driven Policy . 24
4.1.2 Demand-Driven Policy . 25
4.1.3 Data-Driven Policy with Frequency Constraint 25
4.1.4 Asynchronism Based on Resampling . 25
4.1.5 Gathering Data from Multiple Producers . 26
4.1.6 Component Mapping on Hosts . 26

4.2 Component assembly principles . 27
4.2.1 Module-to-Module Connection . 27
4.2.2 Connection Cycles . 28
4.2.3 Connection Fan-out . 28
4.2.4 Filters . 28

4.2.4.1 Filters versus Modules . 29
4.2.4.2 Example of Filter Uses . 29

4.2.5 Dataflow Synchronization Modes . 31
4.2.5.1 FIFO mode . 31
4.2.5.2 Sampling (or Greedy) Mode . 33

1

CONTENTS 2

4.2.5.3 Frequency Synchronizer . 34
4.2.5.4 Other Synchronization Modes . 34

4.2.6 Host Assignment for Network Objects . 35

III User Manual 37

5 Flowvr-appy 43
5.1 Step-by-step tutorial . 43
5.2 Hierarchical Components . 43
5.3 Component objects . 43
5.4 Component Programming . 44

5.4.1 Component Naming Convention . 44
5.4.2 Primitive constructor . 44
5.4.3 Composite constructor . 44
5.4.4 addPort . 45
5.4.5 link . 45
5.4.6 FlowvrApp object . 45

5.5 Application Compilation . 45
5.6 Application Processing: flowvr . 45
5.7 Launching commands . 46

5.7.1 Modules . 46
5.7.2 MPIModules . 46
5.7.3 Filters and synchronizers . 47
5.7.4 Core execution preference . 47

5.8 Standard filters and modules . 47

6 Modules 48
6.1 Launching Commands . 48
6.2 Module Programming . 49

6.2.1 Interface . 49
6.2.1.1 initModule . 49
6.2.1.2 wait . 49
6.2.1.3 get . 50
6.2.1.4 put . 50
6.2.1.5 getStatus . 51
6.2.1.6 close . 51
6.2.1.7 alloc . 51
6.2.1.8 abort . 51

6.2.2 Predefined Input and Output Ports . 52
6.2.3 User Defined Ports . 52

6.2.3.1 Port Vector . 52
6.2.3.2 Output Port . 52
6.2.3.3 Input Port . 53
6.2.3.4 Example . 53

6.2.4 Event Ports . 53
6.2.5 Probing Ports State . 54

CONTENTS 3

7 Messages, Stamps and Data Buffers 55
7.1 Messages . 55

7.1.1 Message: FULL, STAMP, Null, Empty, Valid ? 56
7.2 Data Buffers . 56

7.2.1 Buffer . 56
7.2.2 Example . 58
7.2.3 BufferPool: Reusing Old Buffers for Better Performance 59

7.2.3.1 Constant Size Buffers . 59
7.2.3.2 Bounded Size Buffers . 59
7.2.3.3 Example . 60

7.3 Chunks: Structuring Message Content . 60
7.3.1 Chunk for Keyboard and Mouse Events . 60

7.4 Stamps . 62
7.4.1 Predefined Stamps . 62
7.4.2 Stamp List Specification . 63
7.4.3 User Defined Stamps . 63

7.4.3.1 Adding a new Stamp . 63
7.4.3.2 Reading a Stamp Value . 64

7.4.4 Stamps Forwarding . 65
7.4.4.1 Forwarding a modified stamplist 65

8 Filters and Synchronizers 67
8.1 Inheritance and Plugin Loader . 68
8.2 Filter Callbacks . 68

8.2.1 Dispatcher . 68
8.2.2 init . 68
8.2.3 newStampListSpecification . 70
8.2.4 newMessageNotification . 70

8.3 Ports: Input and Output Message Queues . 71
8.3.1 Port Vectors . 71
8.3.2 Messages . 71
8.3.3 Input Message Queues . 71
8.3.4 Output Message Queues . 72

8.4 Standard filters . 73
8.5 Standard synchronizers . 74

9 Application Execution 75
9.1 The FlowVR Daemon: flowvrd . 75

9.1.1 Launching the FlowVR Daemon . 75
9.1.2 The FlowVR Daemon Command Language 75
9.1.3 Application Launching . 75
9.1.4 Start/Pause/Stop . 76
9.1.5 flowvr-kill . 76

9.2 Run-time Environment . 76
9.3 Application Deployment, Execution and Debugging 77
9.4 Using an MPI network layer . 79

9.4.1 NetMPI vs NetMPIm plugins . 79
9.4.1.1 NetMPI and NetMPIm plugins Work with 79

9.4.2 Running flowvrd with MPI . 80
9.4.3 Enabling top output with MPI . 80

CONTENTS 4

10 Language bindings 81
10.1 Python Module Programming . 81

10.1.1 Interface . 81
10.1.1.1 initModule . 81
10.1.1.2 wait . 81
10.1.1.3 get . 81
10.1.1.4 put . 82
10.1.1.5 getStatus . 82
10.1.1.6 close . 82
10.1.1.7 alloc . 82

10.1.2 User Defined Ports . 82
10.1.2.1 Port Vector . 82
10.1.2.2 Output Port . 82
10.1.2.3 Input Port . 83
10.1.2.4 Example . 83

10.1.3 Event Ports . 83
10.1.4 Probing Ports State . 84
10.1.5 Running modules . 84
10.1.6 Messages and buffers . 84

10.1.6.1 Stamps . 84
10.1.6.2 Data . 85
10.1.6.3 Python “chunks”: converting binary data to/from strings 85

IV Examples 87

11 Primes 90
11.1 Application Instantiation and Execution . 90
11.2 Directory Structure . 90
11.3 Compiling FlowVR modules . 91
11.4 Environment Variables . 91
11.5 Modules . 92

11.5.1 Module implementation . 92
11.5.2 The event processing loop . 92

11.6 Component Assembly . 93
11.6.1 Without synchronization . 93
11.6.2 Synchronization basics . 94

11.6.2.1 Stamps . 94
11.6.2.2 Controlling the module’s output rate 94
11.6.2.3 The presignal filter . 94

11.6.3 Synchronizing multiple inputs . 95
11.6.3.1 An example . 95
11.6.3.2 Synchronizers . 95
11.6.3.3 Further reading . 96

11.6.4 Composites . 96
11.6.4.1 Grouping primitives . 96
11.6.4.2 The greedy . 97

11.6.5 Multiplying compute modules . 97
11.6.5.1 Running more instances . 97
11.6.5.2 Merging results . 97

CONTENTS 5

11.6.5.3 On multiple hosts . 98
11.6.5.4 Tree merge . 99

12 Fluid 100
12.1 Compilation . 101
12.2 Instantiation and Execution . 101

12.2.0.1 Fluid (sequential) . 101
12.2.0.2 FluidMPI (parallel) . 101

12.3 The Simulation Module . 102
12.3.1 Module and Metamodule Components . 102
12.3.2 The Code Module . 102

12.4 The visualization and Interaction Module . 103
12.4.1 The Event Capture and Visualization Code 104
12.4.2 The Event Capture and Visualization Modules and Metamodules Components . 104

12.5 Component Assembly . 105
12.5.1 Sequential Fluid . 105
12.5.2 Parallel Fluid . 105

V Utilities 107

13 Flowvr-glgraph: Interactive Graph Visualization 111
13.1 Introduction . 111

13.1.1 Network-based .net.xml . 111
13.1.2 Hierarchical .adl.out.xml . 111

13.2 Launching . 111
13.3 Component representation . 111

13.3.1 .net.xml . 113
13.3.2 .adl.out.xml . 113

13.3.2.0.1 Composite . 113
13.3.2.0.2 Composite ports . 113
13.3.2.0.3 Module (primitive module) 113
13.3.2.0.4 Filter . 113
13.3.2.0.5 Connection . 113
13.3.2.0.6 Stamp connection . 113

13.4 Shared functionalities . 113
13.5 The toolbar . 113
13.6 The view . 114

13.6.1 Normal Mode . 115
13.6.2 Selection Mode (.net.xml) . 115

13.7 The lists . 115
13.7.1 Normal Mode . 115
13.7.2 Selection Mode (.net.xml) . 115

13.8 Searching by Regular Expressions . 115
13.9 Clustered Layout (.net.xml) . 115

14 Trace Capture and Visualization 116
14.1 Trace Capture and Code Instrumentation . 116

14.1.1 FlowVR Defined Events . 116
14.1.2 User Defined Events . 117
14.1.3 Traces for Filters and Synchronizers . 117

CONTENTS 6

14.1.4 Launching Trace Capture . 118
14.1.4.1 Generating the network . 118
14.1.4.2 Command Details . 118

14.2 Trace Visualization . 119
14.2.1 User Interface commands . 119
14.2.2 Graphical Representation description . 120
14.2.3 Customizing Graphical Representation . 120
14.2.4 Visualization in flowvr-glgraph . 121

15 FlowVR Template Library 122
15.1 Overview . 122
15.2 Vectors . 122
15.3 Matrices . 122
15.4 Quaternions . 122
15.5 Command Line Parsing . 123

15.5.1 Declaring Options . 123
15.5.2 Parsing the Command Line . 123
15.5.3 Retrieving Values . 123

16 Other Tools 124
16.1 flowvr-graph: static network images . 124
16.2 flowvr-shmdump: Dump Shared Memory Content 124
16.3 flowvr-run-ssh: a Simple Module Launcher . 125
16.4 flowvr-fread and flowvr-fwrite Modules: Save/Replay Messages 126
16.5 flowvr-joypad Module . 126

17 Developping Tools 127
17.1 File Searching in Path . 127

17.1.1 Basic search . 127
17.1.2 Advanced search . 127

17.1.2.1 Construction of a FilePath . 127
17.1.2.2 Addition of a Path . 128
17.1.2.3 File Search . 128

17.2 Stream Buffer accessors . 128
17.2.1 std::streambuf . 128
17.2.2 std::stream, std::istream, std::ostream 128
17.2.3 Streambuf Usage examples . 129
17.2.4 streams Usage examples . 129

18 PortUtils – supporting tools for module creation 130
18.1 Motivation . 130
18.2 Integration of custom code with FlowVR . 131

18.2.1 An example problem. 131
18.2.2 Defining module level. 131
18.2.3 Defining network level. 133

18.3 Shortcomings and sources of error . 135
18.4 PortUtils – Overview . 136
18.5 Using PortUtils . 138

18.5.1 Pickung up the example again . 139
18.5.2 Deploying the example . 142
18.5.3 A more complex example . 142

CONTENTS 7

18.5.3.1 Parameter in the regular approach 142
18.5.3.2 Parameters with PortUtils . 144

18.5.3.2.1 Showing parameter-space (flowvr-pups) 145
18.5.3.2.2 Creating parameter template files (flowvr-cpff) 145
18.5.3.2.3 Checking the parameters passed to an application (flowvr-

spl) . 145
18.5.3.3 Using PortUtils services . 146

VI Developer Manual 149

19 Custom filters 153
19.1 Compiling and loading a Filter . 153

20 FlowVR Run-Time Architecture 154
20.1 The Daemon . 154

20.1.1 Message Handling . 154
20.1.2 Routing Table . 154
20.1.3 Filters and Synchronizers . 155
20.1.4 Regulator . 155
20.1.5 Net . 155

20.1.5.1 Threading . 155
20.1.5.2 Internal . 156

20.2 The Controller . 156
20.3 The Controller and Daemon Interactions . 156
20.4 The Command Language . 156
20.5 Application Deployment . 157

20.5.1 States components . 157
20.5.1.1 Modules . 157
20.5.1.2 Plugin states . 158

20.5.2 The 4 Deployment Stages . 158
20.5.3 Application launching: Interactive or Batch 159

20.6 Shared Memory . 160
20.6.1 Basics . 160
20.6.2 Allocator . 161

20.6.2.1 Custom Allocator . 161
20.6.2.2 Daemon Allocator . 161

20.6.3 Shared Memory Area . 161
20.6.4 Buffers . 161

20.7 Interprocess communications . 162
20.7.1 MPChannel . 162
20.7.2 Put . 162
20.7.3 Wait . 163
20.7.4 Alloc . 163
20.7.5 Get . 163

VII MISC 164
20.7.6 Module Name . 165
20.7.7 The Application Controller . 166

20.8 The Module API Factory: registerModule . 166

20.8.0.1 init . 166
20.8.1 Module Binary and Launching Commands 166
20.8.2 flowvr-run-ssh: a Simple Module Launcher 168

Documentation Organisation

The document you are reading intend to give a good understanding of FlowVR from the general con-
cepts down to the details of application programming and the various associated utility tools. You
should read it if you are starting with FlowVR. You can also use it as a reference document even if you
already have some exprience with FlowVR.
Refer to the FlowVR doc repository for the extensive FlowVR related documentation.

9

http://flowvr.sourceforge.net/FlowVRDoc.html

Part I

Getting Started

10

Table of Contents

1 Setting up your environment 12

2 Using an existing application 13

2.1 Compiling and installing . 13

2.2 Generating the application network . 13

2.3 Local execution . 14

2.4 Distributed Execution . 15

2.5 Distributed Execution Over High-Performance Networks 16

2.6 Insitu . 16

2.6.1 Example . 16

2.6.2 Synchronisation of the insitu modules . 17

2.6.3 Visualisation on the dedicated core . 17

Chapter 1

Setting up your environment

Before diving into this manual, you should check out the "Getting Started with FlowVR" guide on
FlowVR’s wiki. It will help you through installing FlowVR and making sure your environment is
properly set.
The next recommended read is the FlowVR-Appy tutorial, through which you’ll master the basics of
FlowVR application development, generation and execution.
In this manual’s "Getting Started" section, we quickly review the process of generating and running a
FlowVR application. If you feel at ease with these concepts, you may jump to Part II, "Overview".

12

https://gitlab.inria.fr/flowvr/flowvr-ex/-/blob/master/README.md
https://gitlab.inria.fr/flowvr/flowvr-ex/-/blob/master/flowvr/flowvr-appy/README.md

Chapter 2

Using an existing application

Now that you have installed FlowVR, ran flowvr-demo-tictac.sh and
flowvr-demo-fluid.sh, let us have a closer look at one of the examples : Primes.
All the examples are installed in share/flowvr/examples and share a similar structure.

2.1 Compiling and installing

Go into the primes directory:

cd [your installation path]
cd share/flowvr/examples/primes

Launch the following script that calls cmake to compile and install the application locally:

./make-app.sh

Once compiled, source the configuration script to set your environment variables :

source bin/primes-config.sh

The binaries you have just compiled will be added to your current shell environment.
Launching a FlowVR application is a two step process:

• Instantiating the application’s network. This step is performed by a Python script that calls
the flowvr-appy library. It produces intermediate files containing the sequence of commands
required to launch the application.

• Actual application launching. This is controlled by the flowvr (see section 5.6) command. It
reads through the intermediate files and sends commands to the FlowVR daemons.

2.2 Generating the application network

The primes application is an example with 3 communicating modules. There are several communi-
cation patterns that work with it. The example variable in primes.py switches between different
configurations.
The following command instanciates primes based on the primes.py in the current directory and
the default parameter value example=4

python primes.py

To change the parameter value for this particular example, pass it on the command line :

13

CHAPTER 2. USING AN EXISTING APPLICATION 14

python primes.py 4

flowvr creates the following intermediate files:

• primes.net.xml : An xml file describing the network of the application : the modules, filters,
synchronizers, and how they are connected together. You can use the flowvr-glgraph (see sec-
tion 16.1) utility to view this file as a graph.

• primes.cmd.xml : An xml file containing internal FlowVR commands used when launching
the application.

• primes.run.xml : An xml file containing the launching command for each module. Usually
it relies on the flowvr-run-ssh (see section 16.3) launcher that uses an ssh connection to
launch distant and local modules.

flowvr-glgraph primes.net.xml

Figure 2.1: Application network of the Primes application (default example 4).

2.3 Local execution

FlowVR is daemon based. Before you start an application, you need to have a daemon running on
each of the involved nodes. In this first case, the only machine is your local machine. In a separate
terminal, start a daemon using the flowvrd command (see subsection 9.1.1). The daemon started
with the -top option will provide various data related to the different components it is in charge of,
such as their execution frequency.

flowvrd --top

You can show a list of the available options with

flowvrd --help

CHAPTER 2. USING AN EXISTING APPLICATION 15

The --help option should work with most flowvr-related executables.
The flowvr (see section 5.6) command takes as argument the prefix of the intermediate files that are
generated by the application instantiation, primes in this case. The components are then loaded after
parsing the primes.cmd.xml file obtained with python primes.py.

flowvr primes

The bigger window (see subsection 2.6.2) displays a list of prime numbers, moving at each computa-
tion ; the small one is dedicated to simple interactions with the rendering windows (focus on that small
window and use arrow keys to rotate the view).

Figure 2.2: When running, the Primes application opens a visualization window and a small window
for capturing keyboard events

When you launch an application, a minimalist shell is started in the same terminal. To stop the appli-
cation (not the daemon), simply type :

stop

and press [Enter]. If you lose control of the application, you can kill the zombie processes by executing,
in another terminal, the following command :

flowvr-kill

In extreme cases, restart the daemon before starting anew.

2.4 Distributed Execution

FlowVR allows to execute an application in a distributed context. In the following part, we will show
you how to execute the primes application on different machines.
First you have to identify at least two machines. One of them could be your local machine.
Before launching, make sure that:

CHAPTER 2. USING AN EXISTING APPLICATION 16

1. All machines involved must have access to FlowVR libraries and binaries. The easiest way is
to have a shared file system, such as nfs, that gives all hosts access to your installation directory
for FlowVR and Primes.

2. Each machine access paths should include FlowVR libraries and binaries. The easiest way is to
add the flowvr-suite-config.sh to the .bashrc and .bash_profile on each machine
involved.

3. FlowVR relies on ssh to access the distant machines. Make sure you allowed distant connections
via ssh without password authentification on all hosts (install ssh keys).

4. Allow FlowVR to open windows on the different machines if distant modules need to open
windows on their local machine.

5. Update the host list in primes.py. NB that if you involve distant machines, mapping compo-
nents on the local host must use the actual name of the local machine and not localhost.

For instance a possible hostlist for Primes is:

host_list = [’pc1’, ’pc1’, ’pc2’, ’pc2’]

6. Start flowvrd on each involved machine.

7. Start the application:

python primes.py 8 && flowvr primes

If you run into a "Long flush time" warning, it might come from the fact that the machine
from which you launch the app is not recognized on the network. You can solve this problem by
using the -b option:

flowvr primes -b xx.xx.xx.xx

where xx.xx.xx.xx is the ip address of your machine.

You can check whether the various components are distributed as expected through the output
of the flowvrd instances.

2.5 Distributed Execution Over High-Performance Networks

The method described earlier covers the steps to run your application over a TCP/IP network, which
is the default daemon behavior. If you want to run FlowVR over a high-performance network such as
Infiniband, all you have to do is pick a different daemon ’Net’ plugin and start your daemons with a
slightly different command. Have a look at Section 9.3, ’Using MPI as a network layer’.

2.6 Insitu

2.6.1 Example

The fluid_insitu example show the some of the core principles applied to an insitu scenario. We want
to instrument an MPI simulation to perform insitu analysis or online visualisation. We also want to do
so using whist alterer as less as possible the simulation code.
We’re going to use a fluid simulation and simplify the data on the fly on an helper core. Then, we’ll
perform some analysis and visualisation on a dedicated node.

CHAPTER 2. USING AN EXISTING APPLICATION 17

Figure 2.3: Screenshot from the fluid_insitu example, showing the rendering of the data simplified
insitu. It also displays isolines computed on the rendering node.

2.6.2 Synchronisation of the insitu modules

Let’s begin with the insitu modules. They are going to simplify the simulation data to reduce both
data transferts and post processing costs. They will also discard frames depending on the frequency
at which the user wants the insitu processsing to be done. Wether we decide to discard or process a
frame, we need all those modules to take the same decision for each frame. Hence we are going to
keep all those modules synchronised.
The user chosen frequency is to be broadcasted to all the insitu modules. We do so using a blocking
port so that every module process each frame with the same frequency message, thus ensuring the
coherency.
The frequency also goes through a GreedySynchronizor (the sync port of which is the endIt of one
of the synchronized modules) so that you always use the last value given by the user.

2.6.3 Visualisation on the dedicated core

The simplified data is gathered to a dedicated node using a tree merge construct. It is then forwarded
an analysis module computing isolines which are, along the simplified data, send to the visualisation
module.

CHAPTER 2. USING AN EXISTING APPLICATION 18

Figure 2.4: Exemple of a graph generated by the fluid_insitu example on three machines. Each color
denotes a machine.

We added a GreedySynchronisor after the tree merge so that you always visualize the very last recieved
frame.

Part II

Overview

19

20

Table of Contents

3 Application Model 22

3.1 Module . 22

3.2 Filter . 23

3.3 Connection . 23

4 Typical uses 24

4.1 Usual synchronization policies . 24

4.1.1 Data-Driven Policy . 24

4.1.2 Demand-Driven Policy . 25

4.1.3 Data-Driven Policy with Frequency Constraint 25

4.1.4 Asynchronism Based on Resampling . 25

4.1.5 Gathering Data from Multiple Producers . 26

4.1.6 Component Mapping on Hosts . 26

4.2 Component assembly principles . 27

4.2.1 Module-to-Module Connection . 27

4.2.2 Connection Cycles . 28

4.2.3 Connection Fan-out . 28

4.2.4 Filters . 28

4.2.5 Dataflow Synchronization Modes . 31

4.2.6 Host Assignment for Network Objects . 35

Chapter 3

Application Model

The FlowVR library provides a programming and execution environment for interactive applications.
Its goal is to enforce application modularity for leveraging software engineering issues while enabling
high performance executions on parallel and distributed architectures. The target architectures are
multi-processor machines, PC clusters and grids.
A FlowVR application is a set of distributed iterative tasks. These tasks, also called components or
modules, ignore networking issues. They simply get messages from input ports, process the received
data and provide results on output ports. They are interconnected using FIFO data communication
channels, forming a network. At execution, these tasks are distributed on the target machines and the
run-time environment (flowvrd) takes care of moving data efficiently between tasks.
FlowVR relies on a data-flow model, often used in scientific visualization. This model is well adapted
to interactive applications and it enables to extract parallelism for efficient parallel execution without
requesting the application developper to be a parallel programmer. This is where object oriented
approaches like scene-graphs usually fail.

3.1 Module

The base component of FlowVR is the module (see section 11.5). A module has input and output
ports. It executes an endless loop and its application programming interface (API) is built around three
basic instructions:

• wait: lock the module as long as no new message is available on each of its connected input
ports, except for a special type of non blocking input ports called event ports (see 6.2.3.4).

• get: get a pointer on the new message received on a given port.

• put: publish a new message on a given output port.

The rest of the module is up to you as long as these semantics are respected. It can be a process, a
thread or a group of collaborating threads. The API is minimal and makes it easy to turn existing code,
be it multi-threaded, parallel or even GPU kernel, into modules.
Every module has:

• an output port endIt where a message is sent every time the module enters the wait instruction,

• an input port beginIt that, when active (as in linked to another module’s output port), locks the
module as long as no message is received (the message is used only as an event, the content is
ignored).

22

CHAPTER 3. APPLICATION MODEL 23

Similarly to classical parallel programming environments, the FlowVR API provides low level mes-
sage handling functions. For instance, FlowVR does not provide data structure serialization. A mes-
sage is simply a sequence of bytes a module has full access to. This enables a fine-grain control on data
copies that can induce significant costs for large messages. Higher level message handling methods
can be implemented using this API.

3.2 Filter

A filter (see chapter 8) has input and output ports. As opposed to modules that can only access the last
message received on each input port, a filter has access to the full buffer of incoming messages stored
locally. It can modify or discard any of these messages. A filter can for example re-sample messages,
by discarding all incoming messages except the last one then forwarding it on its output port.
The API to develop modules is intentionally simple yet constraining (see the wait for instance). The
goal is to keep module development simple. On the other hand, filters offer more freedom in particular
regarding buffer access. Usually an application developer does not have to develop new filters. Filters
provided with FlowVR perform generic message handling tasks, making them easy to reuse in multiple
applications. Combining filters and modules makes it possible to implement complex behaviors, as we
will see in the following section. You can also make your own custom filters.

3.3 Connection

A connection (see section 3.3) is a simple FIFO channel connecting an input port to an output port.
Several connections can share a single output port as their source. In this case each message available
on the output port is broadcasted on each connection. An input port can only have one incoming
connection. If you need to connect multiple output ports to a single input port, what you are looking
for is a filter.
The simplest application a user can write involves two modules connected through a connection. The
size of the buffer associated to a connection is only limited by the amount of available memory. If the
receiver is slower than the sender, an overflow will occur once the memory is saturated. We will see
how to avoid that situation later.
Each message sent on the FlowVR network has its payload as well as a list of stamps. Stamps are
lightweight and identify the message. Some stamps are automatically set by FlowVR. The user can
also define new stamps if required. A stamp can be a simple ordering number, the id of the source that
generated the message or more advanced data like a 3D bounding volume. To some extent, stamps
enable to perform computations on messages without having to read their content. The stamp list can
be sent on the network without the message payload if the destination does not require it. It may
improve performance by avoiding useless data transfers. Such a message is called a STAMP message
in opposite to a FULL message (stamp list and payload). A full connection carry FULL messages,
while a stamp connection carry only STAMP messages. If a STAMP connection is connected to a
FULL output port, it will automatically extract the stamp list from the emitted messages and route to
the destination this STAMP message.

Chapter 4

Typical uses

4.1 Usual synchronization policies

We introduce a simple application that gives a glimpse on the flexibility FlowVR can offer. This
application connects one data producer, the module compute, and the visu consumer module (see Fig-
ure 20.4). This could be a 3D mesh generator linked to an OpenGL rendering process. We show how
we can change the way data are exchanged between both modules simply by changing the network.
FlowVR enables to separate task implementation (see section 11.5) from their assembly (see Part III).
For all these examples, the modules do not have to be recompiled. Only the network specification
changes. It enables to easily test various network options.

4.1.1 Data-Driven Policy

Figure 4.1: A simple FlowVR application with only one connection between two modules.

The simplest way to link the two components is to use a single FIFO connection (see Figure 20.4). In
this case the consumer frequency reaches at most the one of the producer. If the consumer is slower
than the producer, the number of messages sent will grow because the consumer will not be able to
process them. In the model, the buffers associated to FIFO connections are unlimited, but practically
they are limited by the amount of memory available. So a memory overflow can occur.

24

CHAPTER 4. TYPICAL USES 25

4.1.2 Demand-Driven Policy

Figure 4.2: The visu module pulls on demand messages from compute.

A simple approach to avoid such overflow is to switch from a push to a pull paradigm (see Figure 4.2).
Because FlowVR allows cycles in the network graph, it is possible to have thevisu module controlling
the frequency of compute. Each timevisu ends an iteration, it sends a request message on itsendIt port.
This message is forwarded through aPreSignal filter to thebeginIt port of compute. This message will
unlock compute, that will proceed to produce a new data. The PreSignal filter is required to avoid the
deadlock caused by the cycle. This filter sends a first message before forwarding incoming messages :
it puts an initial token into the cycle to unlock it.

4.1.3 Data-Driven Policy with Frequency Constraint

To control the frequency of a module, another approach is to use a MaxFrequency filter (see Figure 4.3).
Each time the module ends an iteration, it sends a request message to this filter (endIt port). From these
messages, the filter is able to compute the frequency of thecompute module. The filter can control the
module frequency by sending messages to the beginIt port up to a limit custom maximum frequency.
Notice that here we have a cycle too. In this case theMaxFrequency filter is in charge of sending
the unlocking first message. As this filter is always used in cycles, it is convenient to give it this
responsibility.

4.1.4 Asynchronism Based on Resampling

For large interactive applications, having all modules running at the frequency of the slowest one can
severely affect the reactivity of computations. A possible approach is to consider that a data stream is
a sampled signal that can be resampled. The consumer only gets the data it can process, discarding the
other ones.

CHAPTER 4. TYPICAL USES 26

Figure 4.3: The max frequency filter bounds the frequency of the compute module.

We present the greedy pattern (see Figure 4.4), a basic resampling pattern favoring the reactivity by
providing the consumer with the most recent data available. We use filters that have access to the
full buffer of messages stored locally to implement this implement sampling policy. This pattern is
organized around a special synchronization filter, called a synchronizer, and 2 filters.
Each time the modulevisu ends an iteration, the synchronizer sync receives one message. A PreSignal
filter is set along the message path between visu and sync to emit at starting time a first message to
unlock the cycle created by synchronizer. sync also receives a stamp message for each message sent
by the producer. When the synchronizer receives a request fromvisu, it forwards to thefilterIt filter
the stamp of the last stamp message received fromPreSignal. filterIt waits to receive the full message
having this same stamp, discards all older messages locally stored and forwards this message to visu.
If no message is available when the synchronizer receives the request, it tells the module to reuse the
last message already received, sending it a special empty message.

4.1.5 Gathering Data from Multiple Producers

A VOIR should be moved to the "Component assembly principles"->"Filters" sub-section FIN
Assume now that compute is a parallel application starting four modules compute/O,... compute/3. We
could modify visu to have four input ports to receive the data part produce by each process. Though
possible, this is an approach we usually avoid with FlowVR. It makes the visu module code dependent
of its external environment. To enforce the modularity of the application, visu is not modified and
the reduction of the partial results to one message is performed by an extranal filter (see Figure 4.5).
Performance is affected if this involves data copies that would not perform a modified visu module. The
reduction can also be implemented along a binary tree merging pattern (see Figure 4.6) for performance
reasons. Switching between these different patterns is external to the module code. It involves neither
code modification nor module recompilation.

4.1.6 Component Mapping on Hosts

In the previous figures you can see that a host name, host1, host2, etc. is associated with each compo-
nent. This is the host machine that executes this component. Before to start an application the user has
to specify the mapping of modules (see section 5.7), while filters are usually mapped automatically
according to module mapping.

CHAPTER 4. TYPICAL USES 27

beginIt

compute
(host2)

endIt Out

filterIt
(host5)

sync
(host5)

beginIt In

visu
(host5)

endIt

PreSignal
(host5)

Figure 4.4: The greedy pattern enables compute and visu to run at independent frequencies. Dashed
arrows represent STAMP connections where only the message’s stamps are transferred.

4.2 Component assembly principles

A VOIR A revoir en details FIN
Designing a complete application can be difficult for the FlowVR beginner. The use of network com-
ponents and their placement in an application is not always easy. The goal of this section is to give
some recipes about application network design.

4.2.1 Module-to-Module Connection

A connection between two modules links an output port to an input port. It is the responsibility of the
FlowVR user to ensure that the type of data sent by the output port is compatible with the receiving
module (see Figure 4.7). In this case the connection between the modules is FIFO: the receiver module
visu gets the message data in the order they were put by the emitter module compute. Each new call to
a wait performed by visu blocks until a message is available on the port.

CHAPTER 4. TYPICAL USES 28

Figure 4.5: Merging messages with one filter.

4.2.2 Connection Cycles

A VOIR putting a default value on an output port before the first call to the wait method is undefined

behavior. FIN
Cycles in connections are possible. In the Primes example, the compute module send calculated prime
numbers inside small packets, in order to let the visu module build the spiral pattern progressively. To
avoid the latter to be flooded with messages, a possibility demonstrated in the 1_fifo_one_to_one and
2_fifo_two_computes Primes test cases is to close the communications in a cycle. A connection relying
on endIt/beginIt predefined ports is then added to let visu warn compute module is ready to receive
new data. This creates a cycle (see Figure 4.8). If the modules have been properly programmed, i.e
putting a default value on each output port before the first call to the wait method (see 6.2.1.3), the
modules will not deadlock when calling the wait.

4.2.3 Connection Fan-out

Messages can easily be duplicated and sent along several connections (fan-out) using a routing node.
For instance it is very useful for parallel computations where several routing nodes are used to build
a broadcast along a binary tree (see Figure 4.9). Each Message put by visu will be received by all
compute modules in a FIFO order.

4.2.4 Filters

CHAPTER 4. TYPICAL USES 29

Figure 4.6: Merging messages along a binary tree of filters.

Filters are usually used to control the dataflow between modules. A filter can be used to send/discard
chosen messages along a connection (keeping only the messages verifying some preconditions, like
an iteration number, for instance), to gather data from different incoming connections, to create a new
message, etc.

4.2.4.1 Filters versus Modules

Often the beginner uses a (meta)module where a filter would have been more appropriate. Here are
the key arguments to help you make the right choice:

• Filters are plugins loaded in the FlowVR daemon while modules are external processes. A
higher performance is generally obtained using filters.

• Filters have access to all incoming messages while modules just receive the last message avail-
able. Thus, filters have more freedom to handle messages.

4.2.4.2 Example of Filter Uses

Amongst filters provided with FlowVR (see section 8.4), the merge and scatter filters are good exam-
ples of what is possible to do with filters.

CHAPTER 4. TYPICAL USES 30

beginIt primesIn keysIn

visu
(node1)

endIt

beginIt

compute/0
(node2)

primesOut

_c0

Figure 4.7: Two modules connected together. Message exchange follows a FIFO mode.

beginIt primesIn keysIn

visu
(localhost)

endIt

beginIt

compute/0
(localhost)

primesOut

_c1 _c0

Figure 4.8: Cycle between two modules.

CHAPTER 4. TYPICAL USES 31

beginIt primesIn keysIn

visu
(node1)

endIt

node1

_c6

beginIt

compute/0
(node2)

primesOut

beginIt

compute/1
(node3)

primesOut

beginIt

compute/2
(node4)

primesOut

beginIt

compute/3
(node5)

primesOut

node2

_c0 _c1

node4

_c2 _c3

_c4 _c5

Figure 4.9: Broadcast along a binary tree using routing nodes.

The scatter filter enable to split a message in N parts, each part being sent on a different output. The
scatter is often necessary when using parallel modules. Scattering allows to reduce the bandwidth by
sending only data used by the receiving modules.
Similarly, merging messages with a merge filter is sometimes required to built a message containing
the complete result of a parallel metamodule where each module produces only a part of the result.
The first example (see Figure 4.5) is a merge to gather the results of the compute metamodule of
the prime example, while the second example (see Figure 4.6) uses a tree of merge filters to built the
density grid computed for the fluid example.

4.2.5 Dataflow Synchronization Modes

The various test cases of the Primes example aim at demonstrating how network design takes a
crucial part in the final behavior of a distributed application. We encourage you to run the differ-
ent tests in order to feel the impact of each modification. Please refer to the share/flowvr/exam-
ples/primes/README for the launching commands.

4.2.5.1 FIFO mode

This is the default mode when no synchronization object controls a connection. In this case, all mes-
sages produced by the emitter will be consumed in the same order by the receiver. No data will be lost
or inverted in FIFO mode. Consequently all modules of the application will work at the speed of the
slowest module. Moreover, if a module like a tracker works a lot quicker than his receiver, the size of
the buffer holding the data between the modules will increase continuously, conducting to an overflow
(crash) during execution.

CHAPTER 4. TYPICAL USES 32

beginIt primesIn keysIn

visu
(node1)

endIt

GreedyItPrimes/sync/0
(node1)

_c3

beginIt

compute/0
(node2)

primesOut

MergePrimes/1
(node1)

_c0

beginIt

compute/1
(node3)

primesOut

_c1

node1

_c2

GreedyItPrimes/filter/0
(node1)

_c7

_c5

_c6 _c4

Figure 4.10: The Primes application with 2 computing node and 1 rendering node. The connection is
filtered using 2 forms of merge filters whose role is to accumulate prime numbers packets in a single
message, delivered to the visu module at the end of the chain.

CHAPTER 4. TYPICAL USES 33

In the Primes example, the tests 1_fifo_one_to_one and 2_fifo_two_computes uses a FIFO mode
(see Figure 4.11) that makes the visu module work at the same speed as the slowest connected module,
either compute or capture. To prevent messages overflow, the communication scheme is organized in
a cycle (see subsection 4.2.2).

beginIt primesIn keysIn

visu
(localhost)

endIt

localhost

_c2

beginIt

capture
(localhost)

keysOut

_c1

beginIt

compute/0
(localhost)

primesOut

_c0

_c4_c3

Figure 4.11: Primes modules organized in a FIFO cycle.

4.2.5.2 Sampling (or Greedy) Mode

The sampling (or greedy) mode refers to sampling systems where components periodically read data
whose values are independently (asynchronously) updated (digital temperature sensor for instance).
This mode is designed for low latency and real time applications. This synchronization method al-
lows modules to work at their maximum speed. At each new iteration, the module uses the latest data
available, ignoring all precedent data. By this way, the latency can be improved but some data pro-
duced are lost. This mode can be implemented between two modules using a GreedySynchronizor
synchronizer and a FilterIt filter.
The synchronizer has two input ports: stamps and endIt. stamps should be connected to the source
of the data while endIt should be connected to the endIt activation port of the module receiving
the data. With this information, the synchronizer will know when the module has finished an iteration
and thus needs a new data. It will read the stamps received on the stamps port and find the most
recent message. The chosen stamps will be forwarded to the order output port. This port should
then be connected to the FilterIt filter on its order input port. The filter has another input port
named in which should be connected to the same source of data that the synchronizer is. Using these
informations, the filter will forward to its out output port the messages corresponding to the received
orders. This output should then be connected to the input port of the destination module which will so
receive the sampled data.
The Primes example introduces this technique in the test 4_capture_greedy, between the capture and
visu modules (see Figure 4.12).

CHAPTER 4. TYPICAL USES 34

The receiving module visu has its endIt port connected to the synchronizer GreedyKeys/sync/0.
It enables this module to ask a new message to the synchronizer each time it completes an iteration.
The synchronizer has a second input port to receive the stamps of each message sent on the output port
of the source module capture. When the synchronizer receives a message from visu, it selects amongst
the available stamps the most recent one and sends this stamp to the filter GreedyKeys/filter/0.
If no new data has been received since the last iteration, the synchronizer replays the same stamp. The
filter waits on its input port a message with a matching stamp and forward this message on its output
port. This is the message that will receive the module visu for the pending iteration. Notice that thanks
to the greedy, the initial cycle introduced with FIFO connections (see Figure 4.11) is suppressed.

beginIt primesIn keysIn

visu
(localhost)

endIt

GreedyKeys/sync/0
(localhost)

_c0

beginIt

capture
(localhost)

keysOut

GreedyKeys/filter/0
(localhost)

_c3 _c1

_c4

_c2

Figure 4.12: A greedy connection between capture and visu modules.

4.2.5.3 Frequency Synchronizer

The iteration frequency of a module can be bounded using a a MaxFrequencySynchronizor syn-
chronizer (see section 8.5). The synchronizer is simply connected to the beginIt input port of a
module and set the synchronizer parameter the maximum authorized frequency.
In the Primes example, the visu module is constrained to a movie-like framerate of 25 Hz (see Fig-
ure 4.13) using this synchronizer.

4.2.5.4 Other Synchronization Modes

By implementing other synchronizers and filters, it is possible to express other synchronization modes.
In the same application, several synchronization modes upon different connections can be present.

CHAPTER 4. TYPICAL USES 35

beginIt primesIn keysIn

visu
(localhost)

endIt

SyncMaxFreqFramerate
(localhost)

_c1_c0

Figure 4.13: The visu module execution driven by a MaxFrequency synchronizer.

In particular a "synchronized sampling" can be implemented by having a synchronizer controlling
one or several filters. In addition to the traditional greedy, the Primes example exposes another
synchronizer-filter pair in the 3_compute_mergeIt test. Instead of a FilterIt filter (see subsub-
section 4.2.5.2), the greedy variation assigned for a proper desynchronisation of the compute module
is built with a MergeIt filter. This component has the ability to accumulate messages iteration by
iteration, which is more suitable for messages delivering computed data that should not be lost. When
the visu module request the information, it receives an all-in-one message. In the case visu is faster
than compute module and no more new messages have arrived since the past request, an empty mes-
sage is delivered. Thus the visu module runs at full speed. Refer to the GreedyItPrimes network
component (see Figure 4.10) for an illustration of a FilterIt filter paired with a greedy synchronizer.
With both FilterIt and MergeIt synchronized connection for capture and compute modules, the
Primes example as in the test 4_capture_greedy is fully greedy. The computation module is usually
the slowest of the application. The greedy synchronization between computation and visualization
allows the latter to display at a better frame rate independently of the speed of the computation. The
second greedy connection is for minimizing the latency of the input device. For a better interaction, it
is important for the application to use the last input status when starting a new iteration. It is important
to keep in mind that if one of these connections are not greedy but FIFO, implicit synchronizations
appear, and the greedy connection becomes useless. This is why it is generally recommended to have
only FIFO or greedy synchronization on a specified FlowVR application.

4.2.6 Host Assignment for Network Objects

Like modules, filters and synchronizers need to be mapped on a host. If this choice is not determinant
to make the application work, it can have an incidence on the performance. Generally a filter or a
synchronizer is placed either on the host running the source or destination module it is related to.
The choice between these two solutions depends on whether the bandwidth or the latency should be
favored.
To minimize the network traffic, it is better to put the filters and synchronizers on the host running the
source module of the connection. It will avoid sending over the physical network messages that are
not required by the destination module. To favor latency, it is better to put the filters and synchronizers
on the host running the destination module of the connection. The interactions between the destination
module and the filters and synchronizers will be more reactive as messages exchange will be just
a pointer exchange through the shared memory and not an effective data transfer over the physical
network.

CHAPTER 4. TYPICAL USES 36

Other intermediate solutions can be appropriate to take advantage of the specific network architecture
of the cluster.

Part III

User Manual

37

38

Table of Contents

5 Flowvr-appy 43

5.1 Step-by-step tutorial . 43

5.2 Hierarchical Components . 43

5.3 Component objects . 43

5.4 Component Programming . 44

5.4.1 Component Naming Convention . 44

5.4.2 Primitive constructor . 44

5.4.3 Composite constructor . 44

5.4.4 addPort . 45

5.4.5 link . 45

5.4.6 FlowvrApp object . 45

5.5 Application Compilation . 45

5.6 Application Processing: flowvr . 45

5.7 Launching commands . 46

5.7.1 Modules . 46

5.7.2 MPIModules . 46

5.7.3 Filters and synchronizers . 47

5.7.4 Core execution preference . 47

5.8 Standard filters and modules . 47

6 Modules 48

6.1 Launching Commands . 48

6.2 Module Programming . 49

6.2.1 Interface . 49

6.2.2 Predefined Input and Output Ports . 52

6.2.3 User Defined Ports . 52

6.2.4 Event Ports . 53

6.2.5 Probing Ports State . 54

TABLE OF CONTENTS 40

7 Messages, Stamps and Data Buffers 55

7.1 Messages . 55

7.1.1 Message: FULL, STAMP, Null, Empty, Valid ? 56

7.2 Data Buffers . 56

7.2.1 Buffer . 56

7.2.2 Example . 58

7.2.3 BufferPool: Reusing Old Buffers for Better Performance 59

7.3 Chunks: Structuring Message Content . 60

7.3.1 Chunk for Keyboard and Mouse Events . 60

7.4 Stamps . 62

7.4.1 Predefined Stamps . 62

7.4.2 Stamp List Specification . 63

7.4.3 User Defined Stamps . 63

7.4.4 Stamps Forwarding . 65

8 Filters and Synchronizers 67

8.1 Inheritance and Plugin Loader . 68

8.2 Filter Callbacks . 68

8.2.1 Dispatcher . 68

8.2.2 init . 68

8.2.3 newStampListSpecification . 70

8.2.4 newMessageNotification . 70

8.3 Ports: Input and Output Message Queues . 71

8.3.1 Port Vectors . 71

8.3.2 Messages . 71

8.3.3 Input Message Queues . 71

8.3.4 Output Message Queues . 72

8.4 Standard filters . 73

8.5 Standard synchronizers . 74

9 Application Execution 75

9.1 The FlowVR Daemon: flowvrd . 75

9.1.1 Launching the FlowVR Daemon . 75

9.1.2 The FlowVR Daemon Command Language 75

9.1.3 Application Launching . 75

9.1.4 Start/Pause/Stop . 76

9.1.5 flowvr-kill . 76

9.2 Run-time Environment . 76

9.3 Application Deployment, Execution and Debugging 77

TABLE OF CONTENTS 41

9.4 Using an MPI network layer . 79

9.4.1 NetMPI vs NetMPIm plugins . 79

9.4.2 Running flowvrd with MPI . 80

9.4.3 Enabling top output with MPI . 80

10 Language bindings 81

10.1 Python Module Programming . 81

10.1.1 Interface . 81

10.1.2 User Defined Ports . 82

10.1.3 Event Ports . 83

10.1.4 Probing Ports State . 84

10.1.5 Running modules . 84

10.1.6 Messages and buffers . 84

TABLE OF CONTENTS 42

Chapter 5

Flowvr-appy

We detail in this section how to develop and assemble the components required to build an application.
This “application” part of FlowVR is called flowvr-appy.
flowvr-appy is called from a Python script that instanciates a set of components (Section 5.2). flowvr-
appy generates commands that flowvr uses to start up the application (Section 5.6).

5.1 Step-by-step tutorial

A step-by-step tutorial on flowvr-appy is also available. You can read it alongside this section.

5.2 Hierarchical Components

Because FlowVR is designed for large applications, the application network, also called the dataflow
graph, can be complex. We provide the user tools to face this complexity and avoid him the burden
of explicitly describing such a graph. We rely on the composite design pattern to support hierarchies
of components. It enables to encapsulate in one component a complex pattern recursively built from
simpler ones.
A component defines input and output ports. We distinguish two kinds of components:

Primitive components. A primitive component is a base component that does not contain an other
component. Primitive components are modules, filters and synchronizers. They have an
addPort method used to declare the ports of the primitive.

Composite components. A composite component contains other components (composite or primi-
tive). Composites have a getPort method that can be used to expose the ports of the enclosed
primitives. They do not have an addPort, though: ports can only be created on primitives.

5.3 Component objects

Component objects are in the following Python class hierachy:

• Component. A Component has a list of ports. Ports can be accessed with getPort.

• Primitive. A basic component that procudes and/or consumes messages. It has a name, a
host, and a run object that contains information on how to start it up.

• Module. A primitive run as an executable.

43

https://wiki-grimage.imag.fr/flowvr-doc/py-flowvrapp-doc/flowvrapp_doc.html

CHAPTER 5. FLOWVR-APPY 44

• FlowvrdPrimitive. A primitive run by the FlowVR daemon.

• Filter

• Synchronizer

• Composite. A component that conceptually groups a set of components. It “publishes”
some or all of the ports of the primitives it contains.

5.4 Component Programming

The goal of this section is to give the basics and more important concepts about component program-
ming. They are implemented in flowvrapp.py.

5.4.1 Component Naming Convention

Primitives have a unique name (or id).
It is conventional to see composites like directories in a file hierachy. Therefore, primitives in a com-
posite are of the form compositeName/primitiveName (the slash indicates the structure). Com-
posites can be nested also.

5.4.2 Primitive constructor

To be instanciated, a primitive must have the following information:

• its name (or id)

• a way to start it up. For modules, this is Run instance. For filters, it is a string that defines the
class that flowvrd must instanciate.

• a set of ports. These are added to the primitive with the addPort() method.

• filters and synchronizers are in addition passed a set of parameters, that are used by the filter
code. They are set directly by accessing a dictionary: self.parameters["nb"] = 18.

5.4.3 Composite constructor

flowvr-appy ignores composites, since they do not correspond to ports or links that are actually instan-
ciated by FlowVR.
For readability, composite constructors should take a prefix argument, which is prefixed to the
names of all components contained in the composite.
The constructor of the composite instanciates all the components it contains, unless there is
missing information at the call of the constructor. For example, when the standard composite
GreedyMultiple is instanciated, it does not know how many inputs it will have to synchronize.
Ports are added to the composite by directly assigning to the ports dictionary:

class MyComposite(Composite):
def __init__(self, prefix):
Composite.__init__(self)
child_module = MyModule(prefix + "/child")
self.ports["out"] = child_module.getPort("out")

CHAPTER 5. FLOWVR-APPY 45

5.4.4 addPort

The addPort method of primitives has up to 4 arguments:

• the name of the port. The port name of a primitive must be unique. This is the only mandatory
argument.

• direction = "in". By default the ports are output ports.

• messagetype = "stamps". By default messages are full.

• blockstate = "nonblocking". By default the port is blocking.

The order of the optional arguments is unspecified, so the parameter name should be specified, as in:

class MyModule(Module):
def __init__(self, name):
Module.__init__(name)
self.addPort("theoutport", messagetype = "stamps", direction = "out")

5.4.5 link

A link connects two ports from different components. It is used like

outputport.link(inputport)

5.4.6 FlowvrApp object

The FlowvrApp object app implicitly records all primitive instances. The XML files required by
flowvr are generated with

app.generate_xml("appname")

where appname is the prefix of the XML files.

5.5 Application Compilation

The XML files are generated by running the script containing the app.generate_xml() call.

5.6 Application Processing: flowvr

The application is processed using the flowvr command. Its main options are:

• -l: request to store all outputs of the application when running. These logs are stored in files
prefixed with log-.

• -v: repeat this option up to 4 times to increase the verbosity level of flowvr. Very useful for
debugging.

• -h: provide the full list of available options.

For instance the primes application is started on the local host using (need a FlowVR deamon running
(see section 9.1))

CHAPTER 5. FLOWVR-APPY 46

python primes.py 2 && flowvr primes

flowvr takes several input files (name matching the application name):

• .net.xml: file containing the primitive components mapped on the targets hosts and connected
using connection representing the dataflow between components. This file is used to produce
images of the graph (see chapter 13). It can be sometimes useful to open this file when debuging
an application.

• .cmd.xml: list of low level commands sent to the FlowVR deamons to set-up the application
network

• .run.xml: list of the command that will be executed to launch the metamodules. Can be inter-
esting to inspect in case of issues when starting the modules. Be aware that some environement
variables that are set when executing these commands are not visible in this file. It is not possible
to copy on of these command and execute it in a shell unless you provide by hand the correct
environement variables.

5.7 Launching commands

The launching command of a primitive contains the information necessary to flowvr to start the
primitive up.

5.7.1 Modules

In the simplest case, the command line of the module is specified as the cmdline parameter in the
Module constructor in flowvr-appy.
The application launching can be customized via the run object passed in to the Module constructor.
It can be:

• FlowvrRunSSH: this is simplest case. There is one FlowvrRunSSH per module. It is built
implicitly if cmdline is specified.

• a single FlowvrRunSSH can be used for several modules. In this case, the launching command
is expected to start all modules (eg. by starting several threads).

• FlowvrRunSSHMultiple is used for modules designed to be run in several instances. They
are each assigned a rank. The

you can request the module to be bound to one/several cores using the cores parameter. This param-
eter follow the syntax of the corelist option of flowvr-run-ssh (20.8.2).

5.7.2 MPIModules

You can use a different object to run MPI modules more easily, yet you still have to pick the one
corresponding to your MPI implementation. They all use mpirun instead of flowvr-run-ssh to
start the modules.

• FlowvrRunMVAPICH: uses mpirun instead of flowvr-run-ssh to start the modules.

• FlowvrRunMPICH: uses mpirun instead of flowvr-run-ssh to start the modules.

• FlowvrRunOpenMPI: uses mpirun instead of flowvr-run-ssh to start the modules.

They all have a "core" and a "bindobject" parameter to ...

CHAPTER 5. FLOWVR-APPY 47

5.7.3 Filters and synchronizers

In this case, the run object is a string specifying what class should be instanciated by flowvrd.

5.7.4 Core execution preference

(Linux) You can pin a module to run exclusively on one of your CPU’s cores, allowing you to shape
how the work is shared. FlowVR example "corepref" has multiple "compute" nodes running on a
single core.

5.8 Standard filters and modules

There are a few standard modules of general interest that come with FlowVR:

• FWrite writes all messages it gets on its input port to a file.

• FRead reads a file dumpled by fwrite, and replays the messages.

• SpyModule connects to a port, and reports some stats about the messages it receives, on an
xterm window that it opens. It requires the Python module interface to be compiled.

• DefaultLogger is dedicated to traces : it collects traces from the daemon. Create a raw
message that can be writen in a file with a FWrite.

Chapter 6

Modules

In this chapter we present how to program a module, the base component of any FlowVR application.
A Module is based on 2 pieces of code:

• The module task, i.e. the code that will be executed by the application on the target machine.

• The module application (or app) that defines the interface of the module (module id and port
names) and the command line used to start it.

A Module is a single thread of execution running a potentially infinite loop. At each iteration a
module gets data from input ports and sends results on output ports. The module API has 5 main
instructions: init(), wait(), get(), put(), close(). The module API is not thread-safe, i.e.
if several execution threads share the same module, the programmer must ensure a proper thread
synchronization. Also note that several modules can be interlaced into a single thread of execution.
A Launching command is associated to to a set of modules. In the simplest case, a single command
launches a single module. A parallel or multi-threaded code (a MPI parallel code or C++ code using
POSIX threads for instance) can run several modules on one or more machines. Such codes are
generally launched from a single command (mpirun for instance). In this case we usually associate
them to the same metamodule.
Currenty, modules can be implemented either in C++, Python or C. You merely use bindings to the
underlying C++ API.

6.1 Launching Commands

See the Flowvrapp documentation (chapter III) for information on how to describe the application’s
structure.
The application is launched by flowvr, which starts the command on the specified host, in the direc-
tory where flowvr was called. Therefore, the command line can be an executable in the PATH, an
absolute file name, or a relative file name. Note that when the module is started up via ssh, the PATH
and LD_LIBRARY_PATH must be set in the shell’s startup scripts (.bashrc or similar).
The script flowvr-run-ssh is in charge of starting the modules. It sets several environment variables
that are used by the API to contact the local flowvrd daemon:

• FLOWVR_MODNAME: the modules’s name inside the application graph.

• FLOWVR_RANK and FLOWVR_NBPROC: rank is used to identify multiple instances of the process
running in parallel.

• FLOWVR_PARENT: the PID of the process to attach to. (i.e. the daemon)

48

CHAPTER 6. MODULES 49

One goal when designing the module API was to be as little intrusive as possible to easily turn any
piece of code into a FlowVR module.
The main way to transmit data to a module is through the argument of its command line or through
environment variables.

6.2 Module Programming

This section describes the programming of a module in C++, using the native FlowVR module API.
You can program a module in any language for which there exists a binding, such as Python (see chap-
ter 10).
For C++ modules, the related files are:

• include/flowvr/module.h : The header file to include within each module code.

• include/flowvr/moduleapi.h : The main module API header file.

• include/flowvr/parallel.h: The parallel interface API.

• share/flowvr/examples/tictac/src/put.cpp : The get module code from Tictac.

• share/flowvr/examples/primes/src/compute.cpp : The compute module code from Primes.

• share/flowvr/examples/fluid/modules/src/fluid.cpp). An example of MPI module.

6.2.1 Interface

6.2.1.1 initModule

A module must first be registered and initialized to connect to the flowvr daemon.

Moduleapi* initModule(std::vector<Port*>& ports, const std::string &
instancename = std::string(""), const std::string &modulename = std::
string(""))

This method takes as argument:

• ports: a vector of user defined input and output ports (Section 6.2.2).

• instancename and modulename: these optional arguments are usually omitted. If set they
overwrite the module name automatically set by FlowVR using modulename/instancename

as new name.

6.2.1.2 wait

int wait()

A FlowVR module should be a loop. The wait is a blocking function call that delimits the beginning
of the next iteration. Before to proceed to the next iteration, a module waits until a new message is
available on each of its connected input ports (input ports not connected to anything are automatically
disabled), except for a special type of non blocking input ports called event ports (see 6.2.3.4). The
value returned is the current status of the module. Zero is returned if an error occurred or if the

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/module.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/moduleapi.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/parallel.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/tictac/src/put.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/compute.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/modules/src/fluid.cpp

CHAPTER 6. MODULES 50

application received the order to stop. In this case the programmer should ensure the module execution
ends properly. The stamp list specification (see subsection 7.4.2) for each input port is received at the
first call to the wait.
A classical module loop looks like this:

while (pFlowVRModule->wait())
{
// work to be done during an iteration

}
// wait returns zero: end the module execution now
pFlowVRModule->close();

// more things to do specific to this module to properly stop it.

6.2.1.3 get

int get(InputPort* port, Message& message)

Get the current message on a given input port (defined by port). The new message is stored in the
message variable. This method should not be called before the first call to wait. This is a non-
blocking call, it simply provides the reference to the message registered during the last wait.
The message content is available as long as there is an active reference on it. The returned message

is such a reference. If message is reused later to receive an other message this reference is lost.
During an iteration (i.e. between two wait()), dupplicate calls to get() on any given port will return
invalid references.
After a call to this function, the user can test whether the data of an incoming message is unique or
not. If it is, then it is possible to safely modify this data after casting away the constness of the buffer:

BufferWrite data;
// get message
module->get(port, message);
// check if only you can access the data
if (message.data.unique(Buffer::ALLSEGMENTS)) {

// perform a shallow copy
data.Buffer::operator = (message.data); // const_cast

} else {
// perform a deep copy
const size_t size = message.data.getSize(Buffer::ALLSEGMENTS);
data = module->alloc(size);
message.data.copyTo(data.writeaccess());

}
// in-place processing of data
// ...

6.2.1.4 put

int put(OutputPort* port, MessageWrite& message)

Send a new message to an output port. Only one message can be sent on a given port at each iteration
(i.e. between two calls to wait). This method should not be called before the first call to wait. The
message should not be modified after calling this method. It can be read, but it is strongly adviced

CHAPTER 6. MODULES 51

to erase the reference to this message as soon as possible (destroy the message or call the clear()
method). As long as the message is referenced it is kept in memory.

int put(OutputPort* port, const StampList *)

This other prototype allows stamplist forwarding. It can only be used at the very first iteration, before
putting the first message (see 7.4.4).

6.2.1.5 getStatus

int getStatus()

This method returns the status of the module, zero if an error occurred or if the module needs to be
stopped. All other methods also return the status after completion.

6.2.1.6 close

int ModuleAPI::close()

This method should be called to properly exit the module.

6.2.1.7 alloc

BufferWrite ModuleAPI::alloc(int size)

Allocate a new buffer (see subsection 7.2.1) of a given size to store the content of a message before to
put it. This call returns a read/write BufferWrite (see section 7.2) object stored in the shared memory
segment controlled by FlowVR.
For performance-critical modules, it is advised to directly work within this type of FlowVR buffer.
They are allocated in the shared memory segment. If the module allocates its own memory space for
messages (not in the shared memory segment), an extra copy to the FlowVR handled buffer will be
required, incurring some performance penalties.
Note that, as all other ModuleAPI methods, this method should not be called before init(). This
is an important requirement as sometimes allocations can be used to construct some data structures.
They might be incorrectly initialized if this is done before the call to the init method.
Dynamic allocations can be costly and memory fragmentation issues can appear if too many alloca-
tions are requested. When a module often allocates buffers of the same size, it is more efficient to
take advantage of the BufferPool mechanism (see subsection 7.2.3) to reduce the required dynamic
allocations.

6.2.1.8 abort

int ModuleAPI::abort()

This method may be called by any module. This method sends a message to the launcher and triggers
the stop command as if it was typed in its console. Redundant calls are ignored by the launcher.

CHAPTER 6. MODULES 52

6.2.2 Predefined Input and Output Ports

Each module has two predefined ports:

• endIt output port: each time a module calls the wait method it automatically sends a message
on the endIt output port. This port is a signal port. It enables a module to signal that it ended
the current iteration and that it is ready to perform a new one.

• beginIt input port: when enabled (i.e. connected) , this port forces the wait method
(see 6.2.1.1) to block until a new entry on this port is available. This port is an activation
port, allowing to synchronize the module activity on an external signal (to control its frequency
for instance).

These ports do not have to be declared when programming a module.
The Primes example heavily uses endIt and beginIt ports for synchronization purpose (see subsec-
tion 4.2.5).

6.2.3 User Defined Ports

The information related to each port is:

• its direction (input or output)

• whether it’s a full or stamps port

• its blocking state (blocking or non-blocking)

• for output ports, the type of the stamps it plans to send out.

6.2.3.1 Port Vector

Ports need to be declared before the module initialisation. All user defined ports need to be stored in a
vector passed as argument of initModule (see subsection 6.2.1).

6.2.3.2 Output Port

ModuleAPI::OutputPort(const std::string& myname, StampList* mystamps=NULL,
bool bOwn = false);

Output port constructor:

• myname: port name

• mystamps: a stamp list specification (see subsection 7.4.2) if the messages sent on that port
will carry user defined stamps. This argument is optional and the stamp list specification can be
specified latter.

• bOwn: only used when passing a stamp list specification in mystamps. If set to true the
stamplist is deleted upon destruction of the port, not otherwise.

CHAPTER 6. MODULES 53

6.2.3.3 Input Port

ModuleAPI::InputPort(const std::string& myname,
StampList* mystamps=NULL,
bool bOwnStampList = false,

bool bIsNonBlockingPort = false);

Input port constructor:

• myname: port name

• mystamps: The stamp list specification usually does not need to be specified here (leave the
default NULL value) as it will be set by the system at initialisation according to the stamp list
specification of the incoming messages.

• bOwnStampList: only used when passing a stamp list specification in mystamps. If set to
true the stamplist is deleted upon destruction of the port, not otherwise.

• a stamp list specification (see subsection 7.4.2) if the messages sent on that port will carry user
defined stamps. This argument is optional and the stamp list specification can be specified latter.

6.2.3.4 Example

In this example we create an extra input and output port. We also add stamps to the output port:

// declare an input and output port
flowvr::InputPort *in = new flowvr::InputPort("in");
flowvr::OutputPort *out = new flowvr::InputPort("out");

// add an int stamp
flowvr::StampInfo *siMycounter = new flowvr::StampInfo("mycounter", flowvr::

TypeInt::create());
out->stamps->add(pStampComputeTime);

// prepare the ports vector
std::vector <flowvr::Port*> ports;
ports.push_back(in);
ports.push_back(out);

6.2.4 Event Ports

It is possible to have non blocking input ports called event ports. In opposite to classical input ports,
the wait does not wait until a new message is available on event ports. Thus, if no message was
available when wait was called, get returns an invalid message (make sure to test it).
Event ports can be convenient for grabbing messages that are sent episodically, i.e. at a rate signif-
icantly lower than the expected module iteration rate. Typically event ports can be used to receive
control messages from a GUI.
If a module has only event ports and that the beginIt port is not connected, it will never block at
the wait call. This may lead to a free running module that consumes much more CPU resources than
expected.
Messages can be accumulated on input ports, for instance if many messages are sent between two
iterations of the event port holder, possibility leading to buffer overflows. Inserting a filter to erase or
merge accumulated messages can be required to avoid such pitfall.

CHAPTER 6. MODULES 54

The same behavior can be obtain by putting an adequate filter before a classical input port. This
approach has the advantage of changing the module behavior for a given application without having
to change the module code. Generally we advice not to abuse of event ports that tend to affect the
genericity of modules.
Being an event port or not need to be set before calling the initModule method (see subsection 6.2.1)
either:

• At port creation (see subsubsection 6.2.3.3)

• Setting to true the port non blocking flag (call after initModule has no effect):

InputPort::setNonBlockingFlag(bool bBlock)

A VOIR Et l’initialisation des modules paralléle ? FIN

6.2.5 Probing Ports State

• bool Port::isConnected(): return true if the port is connected. Call valid only after the
first wait.

• bool Port::isInput() and bool isOuput(): return true if match the expected port
type.

• bool InputPort::isNonBlockingPort(): return true if event port (see 6.2.3.4).

Chapter 7

Messages, Stamps and Data Buffers

Related files:

• include/flowvr/message.h : The message header file.

• include/flowvr/buffer.h : The buffer API header file.

• share/flowvr/examples/tictac/src/put.cpp : The get module code from Tictac.

• share/flowvr/examples/primes/src/compute.cpp : The compute module code from Primes.

Modules and network components send and receive messages. This section describes how to handle
these messages. This is relevant for module programming (see section 11.5) as well as for filter and
synchronizer programming (see chapter 8).
This section is mainly devoted to the C++ version. The Python API is described in section 10.1.6.

7.1 Messages

A message is composed of two parts, the stamp list and the data buffer (payload). The message API is
defined in include/flowvr/message.h.
It defines 3 classes:

• Message(): Read-only stamp list and data buffer. Message returned by a get (see 6.2.1.2).

• MessageWrite(): Read/write stamp list and data buffer. Message that can be sent by a put
(see 6.2.1.3).

• MessagePut(): Read/write stamp list but read-only data. Message that can be sent by a put
(see 6.2.1.3). Useful if you need to resend a data buffer extracted from a received message (in
this case the data buffer is read only).

For these three classes the user can have direct access to:

• Stamps stamps: the stamp list (stamps)

• Buffer data: the data buffer

These classes also defines some utility methods including:

• message comparison operators (== and !=) ,

55

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/message.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/buffer.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/tictac/src/put.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/compute.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/message.h

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 56

• void clear(): free the message content (stamps and data)

• Type getType() return the message type (STAMP or FULL)

• bool valid(): proble the message validity

7.1.1 Message: FULL, STAMP, Null, Empty, Valid ?

A VOIR Ingo please review this part. Not sure what to do with the Null messages (Message::Null).
Text was (not sure correct): Message validity should also be tested calling the bool Message::valid()

method (probe the message structure). FIN
Some methods, like frontMsg() on input message queues, can return invalid messages. This is in
particular the case when event ports (see 6.2.3.4) have no message available:

if(msg.valid() == false) { ... // no message available on this event port }

Also as the wait is a blocking instruction for modules, it can be necessary to generate empty messages
if no new content is available simply to unlock the wait. In this case the module should proble the
message content and behave accordingly.
A message is FULL if it has a non null data buffer, even if the buffer data is of size 0. Otherwise this is
a STAMP Message. Use the method bool Buffer::empty() to test if a data buffer is empty, i.e. of
size 0.
You can find a code line like the following one in some filters:

m.data = alloc(0);

It produces messages where only the stamp list is meaningful. But, as a zero size buffer is allocated, it
is considered a FULL message. This make the filter more generic as this output port is FULL. A FULL

port can always emit STAMP messages if needed (just need to be connected to a ConnectionStamps
A VOIR add link to connection stamp section when written FIN

The PreSignal filter generates messages with it=-1. These special messages are used to unlock cy-
cles and are sent when the filter starts. Other components can thus receive such messages. Test for
such messages and consider them as activation messages triggering a first action (include/flowvr/plu-
gins/flowvr.plugins.PreSignal.cpp). Not doing any thing when receiving such message may lead to a
deadlock as the cycle this signal was supposed to unlock stay in a deadlock state.

7.2 Data Buffers

A VOIR voir les liesn vers doxygen flowvr::Buffer flowvr::Buffer flowvr::BufferWrite All the shared memory
management is deferred to an abstract flowvr::BufferImp class.
Buffer Buffer to the constructor. When a Buffer or BufferWrite object is destroyed the reference counter is
decremented, and the associated buffer is automatically freed if no other reference exists.
FIN

7.2.1 Buffer

The data of a message are necessarily stored in a unique continuous memory space A VOIR This is

not true anymore FIN , a buffer.
FlowVR defines (include/flowvr/buffer.h):

• BufferWrite: a read/write buffer used to prepare the data before to send it.

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugins/flowvr.plugins.PreSignal.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugins/flowvr.plugins.PreSignal.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1Buffer.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1Buffer.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1BufferWrite.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1BufferImp.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1Buffer.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1Buffer.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1Buffer.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1BufferWrite.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/buffer.h

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 57

• Buffer: a read-only buffer the user has access to at message reception.

These buffers are all allocated in the shared memory segment.
To allocate a BufferWrite:

• for a module use the alloc (see 6.2.1.6) method from the module API.

• for a filter use BufferWrite buf= alloc(size).

Allocating a size zero buffer is possible and can be useful if your protocol needs an empty message.
A VOIR somewhere document the -1 stamp message in corespondance with the -1 buffer FIN

To write into the buffer:

• BufferWrite::writeAccess(): return a pointer at the beginning of the buffer.

• BufferWrite::getWrite<Type>(offset) : return a pointer of the template type Type to
the specified offset in the buffer (measured in bytes).

To read the buffer content, typically after a get (see 6.2.1.2):

• Buffer::readAccess(): return a read-only pointer at the beginning of the buffer.

• Buffer::getRead<Type>(offset): return a read-only pointer of type Type to the specified
offset in the buffer.

It is possible to make a new buffer by copying (fully or partially) the references of an existing buffer
(data are not duplicated):

• BufferWrite or Buffer copy constructors for a full or partial (specifying an offset and size
as parameters) copy.

• operator= for a full copyof the reference. Again, data won’t be duplicated.

Use with care for read/write buffers as two copies have write access to the same memory space. This
can be useful for instance if some data need to be extracted from an existing buffer to make a new
message sent on a different port.
To resize an existing buffer:

• resize: Change the buffer size. If necessary allocate a new buffer and copy existing data into
this new buffer. If the requested size is larger, this methods fails.

• expand: Change the buffer size. If a non null buffer already exists and the requested size is
larger, this methods fails (safeguard for performance purpose).

FlowVR manages reference counters on buffers. When such counter reaches zero the memory asso-
ciated to the buffer is deallocated. The same buffer may be accessed (read only) by several modules
(same message sent to various modules running on the same host). Giving a module direct control
to free memory would be unsafe (one module deallocating a buffer that an other still need to access).
However this is important the user signals FlowVR when a buffer is not in used anymore by destroying
the buffer or calling the clear() method (can also be done at the message level (see section 7.1)).

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 58

7.2.2 Example

The following code allocates and fills a buffer to send a set of identifiers indicating currently pressed
keyboard keys:

flowvr::MessageWrite msgWrite; // MessageWrite object
unsigned char *pMsgData = 0; // Pointer to allocated memory
unsigned int keyPressedCount = ...; // Hold the number of keys currently

pressed

// Request a FlowVR buffer large enough to store pressed keys identifiers :
msgWrite.data = pFlowVRModule->alloc(keyPressedCount*sizeof(unsigned char))

;

// Get writing reference :
pMsgData = (unsigned char *)msgWrite.data.getWrite<unsigned char>();

// Fill buffer with the identifiers of the keys which are pressed :
for (int i=0; i<MAX_KEYS; i++)
if (tKeysState[i])
{

*pMsgData = (unsigned char)i;
pMsgData++;

}
// Put message on a given port (stamp list automatically filled)
pFlowVRModule->put(pPortPrimesOut, msgWrite);

And below is the code to read keys state information from received message:

flowvr::Message msgRead; // Message object
unsigned int keysPressedReceviedCount; // Number of keys identifiers to

read
unsigned char* pKeysPressed = 0; // Application buffer to store keys

pressed

// Get the message from the input port
pFlowVRModule->get(pPortPrimesIn, msgRead);

// Count the number of pressed keys from message size (returned in bytes) :
keysPressedReceviedCount = msgRead.data.getSize() / sizeof(unsigned char);

// Copy message buffer to application buffer (alternative: is to work
directly with the data of the message)

if (keysPressedReceviedCount > 0)
{
pKeysPressed = new unsigned char [keysPressedReceviedCount];
memcpy((void*)pKeysPressed, msgRead.data.readAccess(),

keysPressedReceviedCount);
}
// Message content not useful anymore: clear the message
msgRead.clear();

Remark The actual codes of capture (share/flowvr/examples/primes/src/capture.cpp) and visu (
share/flowvr/examples/primes/src/visu.cpp)) use a higher level layer for handling key messages:
Chunk Events (see section 7.3).
A VOIR a revoir FIN

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/capture.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/visu.cpp

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 59

7.2.3 BufferPool: Reusing Old Buffers for Better Performance

Reference file

• include/flowvr/bufferpool.h: The buffer pool header file.

• share/flowvr/examples/primes/src/compute.cpp : The compute module code from Primes uses
a buffer pool.

A VOIR The flowvr::BufferPool FIN

7.2.3.1 Constant Size Buffers

As the shared memory is concurrently accessed by several processes, allocation operations can become
quite expensive (lock contentions, memory fragmentation). To remove this potential bottleneck, a
simple class lets you reuse old buffers not used anymore. This only works for the case of repetitive
allocations of buffers with the same size, which is quite common.
There is no major difference compared to a regular buffer handling except that you have to:

• Create a BufferPool object after the component initialisation and before entering the main
loop. The BufferPool stores a cache of old buffers. This cache size has a default value that
you can change if required (constructor argument).

• Call the alloc method from the BufferPoll class rather than the regular allocation methods
like alloc (see 6.2.1.6). Allocate a new buffer if it fails to reuse an old one (feature that can be
turned off)

This mechanism of buffer pools enables reducing or even removing dynamic allocations with a
bounded memory cost (buffer size × cache size). Performance improvement can be significant.

7.2.3.2 Bounded Size Buffers

If the size of buffers is not constant but bounded, a BufferPool can still be used with a little ex-
tra effort to resize the buffer provided. When allocating a buffer, use the BufferPool allocation
method alloc and request the maximum size. If you only need a part of this buffer, resize it using a
BufferWrite copy constructor or the expand method (see subsection 7.2.1). If this buffer needs to
be sent to a different host, only the relevant sub-part will be sent.
The code below shows how to derive a buffer of size 256 from an original buffer of greater size :

BufferWrite originalBuffer; // Buffer retrieved from the buffer Pool whose
size will be >= 256

... // Deal with originalBuffer

BufferWrite* pSubBuffer = 0; // pointer to the sub-buffer

// Get a reference to a subset of the original buffer (the 256 bytes at
offset 0) :

pSubBuffer = new BufferWrite(originalBuffer, 0, 256);

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/bufferpool.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/compute.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/doc/html/classflowvr_1_1BufferPool.html#_details

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 60

7.2.3.3 Example

The compute component sends computed prime numbers by packets of constant size. Thus it can use
a buffer pool (share/flowvr/examples/primes/src/compute.cpp):

flowvr::BufferPool* pOutPool = 0; // BufferPool object
unsigned int tempPrimeNumbersMaxCount = ...; // Constant count of prime

numbers
unsigned int *tTempPrimeNumbers = 0; // Calculated prime numbers by

iteration

// Create a pool of buffers :
pOutPool = new flowvr::BufferPool();
...
flowvr::MessageWrite msgWrite; // MessageWrite object

// Request for a new buffer from the pool to send new computed prime
numbers.

msgWrite.data = pOutPool->alloc(pFlowVRModule, tempPrimeNumbersMaxCount*
sizeof(unsigned int));

// Fill message data :
memcpy((void*)msgWrite.data.writeAccess(), (void*)tTempPrimeNumbers,

tempPrimeNumbersMaxCount*sizeof(unsigned int));

7.3 Chunks: Structuring Message Content

Related files:

• include/ftl/chunk.h : The base chunk definition.

• include/ftl/chunkwriter.h : Building new messages from chunks.

• include/ftl/chunkreader.h : Reading chunks from a message.

FlowVR provides a utility library to store and retrieve data in message buffers as structured chunks.
This library helps to pack and unpack data into a message buffer. It is useful in particular when a
message is the concatenation of several sub-messages.
Beside the base chunk definition, FlowVR provides chunk serializations for mouse and keyboard
events. We present here how to use these specializations.

7.3.1 Chunk for Keyboard and Mouse Events

Related files:

• include/ftl/chunkevents.h: The chunk events header file.

• share/flowvr/examples/primes/src/capture.cpp and share/flowvr/examples/primes/src/visu.cpp:
Examples of module using chunk events

The flowvr-ftl/include/ftl/chunkevents.h header file defines a set of data structures to encode keyboard
and mouse events. To each event type is associated a class with various public fields that define a
chunk event.

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/compute.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/ftl/chunk.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/ftl/chunkwriter.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/ftl/chunkreader.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/ftl/chunkevents.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/capture.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/visu.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-ftl/include/ftl/chunkevents.h

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 61

Encoding an event is done when calling the appropriate addEvent that first build the appropri-
ate chunk event and next add it to a ChunkEventWriter object, the chunk event version of a
BufferWrite.
Once all chunks have been stored in the ChunkEvenWriter, calling its put method on a given port
will emit the expected message. There is no need to explicitly take care of buffer allocation and data
packing.

// ChunkEventWriter
ChunkEventWriter *keysMsgs = new ftl::ChunkEventWriter();

// Add first chunk of EventButton type
keysMsgs->addEventButton(FLOWVR_KEY_F1,true);

// Add second chunk of EventKeyboard type
keysMsgs->addEventKeyboard(’a’,0,false,0);

// Put message (stamps are automatically set)
keysMsgs->put(pPortOut);

At reception, the procedure is similar to message reading, except that a chunk iterator is defined to
iterate on the message to extract each chunk. As there is different types of chunks, it is necessary to
first probe the chunk type to cast the retrieved chunk to the correct type and read its content.

flowvr::Message msgRead;

// Get the message
pFlowVRModule->get(pPortIn, msgRead);

// Use iterator to extract the chunks
for (ChunkIterator it = chunkBegin(msgRead); it != chunkEnd(msgRead) ; it++)

{

// The chunk
const Chunk* c = (const Chunk*) it;

// Probe its type
switch (c->type & 0x0F) {

case ChunkEvent::BUTTON:
// Cast and read the chunk fields
ChunkEventButton * cc = (ChunkEventButton *)c;

key = cc->key;
val = cc->key;

case ChunkEvent::KEYBOARD:

// Cast and read the chunk fields
ChunkEventKeyboard * cc = (ChunkEventKeyboard *)c;

key = cc->key;
val = cc->val;

special= cc-> special;
modifier= cc->modifier;

break;
}

}

The events supported:

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 62

• ChunkEventButton: It supports one id for each key and one digital value (0/1) pressed or
released

• ChunkEventSlider: events for sliders, it supports one id for each key and one analog value (0
to 1)

• ChunkEventKeyboard: events for keyboard. It supports one id for each key, one key values
(0/1) pressed or released, one tag specifying if it is a special button and a modifier that tell if
CTRL, SHIFT, etc. where pressed together with the key

• ChunkEventMouse: events for mouse. It supports the x and y coordinates and digital values
for each mouse key (0/1) pressed or released

• ChunkEventString: events for strings. It supports any string and can be used for commands
like speech recognition

• ChunkEventPosition: events for positioning devices. It supports a 4 X 4 matrix for transfor-
mation.

The addEvent methods also support a last optional parameter to encode a device id. It is useful to
distinguish between devices when two or more a re used.

7.4 Stamps

Related files:

• include/flowvr/stamp.h: the stamp API

• share/flowvr/examples/primes/src/compute.cpp share/flowvr/examples/primes/src/visu.cpp: ex-
ample of user defined stamp.

• flowvrd/src/plugins/filters/flowvr.plugins.FilterIt.cpp: Example of filter merging messages based
on their it stamps.

Each FULL FlowVR message is composed of a stamp list and the data buffer (payload). A stamp is a
small piece of information related to the message. Some stamps are automatically set by FlowVR. The
user can also define new stamps if required. To some extent, stamps enable to perform computations
on messages without having to read the message data buffer. The stamp list can be sent without the
message payload if the destination does not need it. It improves performance by avoiding useless data
transfers. Such a message is called a STAMP message.

7.4.1 Predefined Stamps

A VOIR Clarify the stmaps with -1 values, 0 values, etc. FIN
The following system stamps are part of each message stamp list:

• source (string): This stamp identifies where the message was created (component and output
port).

• it (int): iteration number of the component when the message was created. It increases monot-
ically for the sequence of messages emitted on a given output port (if a message is not sent at
each iteration num stamps are not consecutive for instance). A module iteration starts each time
a wait is executed. Because filters do not have such explicit iteration counter, setting the it

value is left to the developper.

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/stamp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/compute.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/visu.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/flowvrd/src/plugins/filters/flowvr.plugins.FilterIt.cpp

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 63

• num (int): message number at a given message source (component and output port). num is
incremented by one each time a new message is sent.

These stamps carry the base identification data of each message. For example, flowvr commonly
relies on the source stamp to route messages to their destination.
When a module calls the put() (see 6.2.1.3) a stamp list with the predefined stamps is automatically
attached to the message.
For filters, the call to put() on an outputmessagequeue sets the source and num stamps automat-
ically. The it stamp must be explicitly set by the user. Notice that the put has an optional parameter
to set num to a specific value instead of the system assigned one if required. A VOIR link to put of

message queue once documented FIN
Reading a system stamp on a message is simple:

// Get a new message from input port
pFlowVRModule->get(pPortPrimesIn, msgRead);

// Read the it stamp value and store it in myit
msgRead.stamps.read(pPortPrimesIn->stamps->it, myit);

7.4.2 Stamp List Specification

A list of stamps, called the stamp list specification is attached to each input and ouput port of modules
and filters. This list defines the list of stamps that is attached to each message send or received on that
port.
This stamp list is first defined for each output port. No action is required from the programmer for
predefined stamps. If extra stamps need to be attached to messages, they need to be added to the
corresponding output port stamp list specification.
At initialization, a very first message is sent from each ouput port with this stamp list specificition
(special message with a stamp num=-1). Input ports set their stamp list specification from the one they
receive through this message. This message is received at the first call to the wait (see 6.2.1.1) for
modules or at the newStampListSpecification calls for filters (see subsection 8.2.3).
Ports of modules and filters have a stamps field that gives direct access to the stamp list specification.
This is a classical stamp list.

7.4.3 User Defined Stamps

7.4.3.1 Adding a new Stamp

A stamp list specification (see subsection 7.4.2) is attached to each port. By default this list contains
only the predefined stamps. To add a new stamp to an output port, it is first necessary to define a new
StampInfo object with a name and type. A StampInfo is build from the stamp’s name and type.
This type is created by calling the create method of the appropriate BaseType subclass. Next, this
new stamp specification need to be added to the port stamp list with the add method (both filter and
module ports have this stamps field).
Every time a new message is built, the user has the responsability to fill the values of the extra stamps
using the write method on the message stamp list, providing again the stamp specification as a pa-
rameter, to correctly store the stamp value:

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 64

// Output port declaration :
flowvr::OutputPort* pPortPrimesOut = new flowvr::OutputPort("primesOut");

// New stamp specification :
flowvr::StampInfo *pStampComputeTime = new flowvr::StampInfo("

computationTimeIt", flowvr::TypeInt::create());

// Add the new stamp to the output port stamp list.
pPortPrimesOut->stamps->add(pStampComputeTime);

flowvr::MessageWrite msgWrite;
int lastIterationComputeTime;
....
// Set the value of the new stamp
if (!msgWrite.stamps.write(*pStampComputeTime, lastIterationComputeTime))

std::cout << "Error writing computationTimeIt"<<std::endl;

// Transfer the message
pFlowVRModule->put(pPortPrimesOut, msgWrite);

7.4.3.2 Reading a Stamp Value

On input ports the stamp list specification (see subsection 7.4.2) is set automatically according to the
stamp list contained in a special initialization message. If extra stamps have been defined on the emitter
side they will be available.
Call the read method on the received message stamp list, providing a stamp specification as a param-
eter. This stamp specification can be retrieved from the port stamp list specification, using the stamp
name. Of course, the container of the stamp value should match the actual stamp type (int in the
example bellow).

pPortPrimesIn = new flowvr::InputPort("primesIn");

flowvr::Message msgRead;
int lastIterationComputeTime;
...
// Receive the message
pFlowVRModule->get(pPortPrimesIn, msgRead);

// Get a pointer on the stamp specification (need to be called after the
first wait for modules)

flowvr::StampInfo * pStampComputeTime = (*(pPortPrimes.stamps))[std::string(
"computationTimeIt")];

// Read the value of stamp "computationTimeIt". Assign -1 if error.
if (! m.stamps.read(*pStampComputeTime, lastIterationComputeTime))

lastIterationComputeTime = -1;

An alternative approach consists in declaring the extra stamp like for an output port:

pPortPrimesIn = new flowvr::InputPort("primesIn");

// New stamp specification
flowvr::StampInfo * stampComputeTime= new flowvr::StampInfo("

computationTimeIt", flowvr::TypeInt::create());

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 65

// Add new stamp specification to the port stamp list
pPortPrimesIn->stamps->add(stampComputeTime);

flowvr::Message msgRead;
int lastIterationComputeTime;
...
// Receive the message
pFlowVRModule->get(pPortPrimesIn, msgRead);

// Read the user defined stamp value. Assign -1 if error.
if (!msgRead.stamps.read(*stampComputeTime, lastIterationComputeTime))
lastIterationComputeTime = -1;

7.4.4 Stamps Forwarding

If you had several modules chained one after the other, keeping and forwarding stamps with the previ-
ous API can become cumbersome. It would require to define the stamplist the exact same way in each
module, and to copy each stamp manually.

int put(OutputPort* port, const StampList *)

With this method, you can easily forward a stamplist to an output port. It can only be used at the very
first iteration, before putting the first message.

int nit = 0;
while (module->wait()) {

if (nit == 0) {
module->put(&outPort, inPort.stamps);

}
flowvr::Message in;
module->get(&inPort, in);
// stamp forwarding
flowvr::MessageWrite out;
out.stamps.clone(in.stamps, outPort.stamps);
/* ... */
put(&outPort, out);
nit++;

}

7.4.4.1 Forwarding a modified stamplist

You might also want to add a new stamp to the previous stamplist. This can also be done but has one
important restriction: you must not use variable length strings. That is, if one of the user-defined stamp
is a string, then it must always have the same length from one iteration to the other. If so, then you can
clone the input stamplist, add a new stamp then forward it.

int nit = 0;
while (module->wait()) {

if (nit == 0) {
StampList * newList = inPort.stamps.clone()
newList->add(newStamp);
module->put(&outPort, newList);
delete newlist;

}

CHAPTER 7. MESSAGES, STAMPS AND DATA BUFFERS 66

flowvr::Message in;
module->get(&inPort, in);
// stamp forwarding
flowvr::MessageWrite out;
out.stamps.clone(in.stamps, outPort.stamps);
/* ... */
out.stamps->write(outPort.stamps["newStamp"], val);
module->put(&outPort, out);
nit++;

}

Once its done, at each iteration, incoming stamps can be cloned using the existing API.

Chapter 8

Filters and Synchronizers

Related files:

• include/flowvr/plugd/messagequeue.h: input message queue.

• include/flowvr/plugd/outputmessagequeue.h: output message queue.

• include/flowvr/plugins/baseobject.h: daemon plugin base class.

• include/flowvr/plugins/filter.h: filter base class.

• include/flowvr/plugins/synchronizor.h: synchronizer base class A VOIR rename synchronizer
FIN

• include/flowvr/plugins/flowvr.plugins.PreSignal.cpp: a very simple filter that emit nb initial
empty messages and next just forward incoming messages.

• flowvrd/src/plugins/filters/flowvr.plugins.FilterIt.cpp: filter example.

Filters are primitive components having input and output ports (also called input and output message
queues for filters). They perform tasks on input data and produce new output messages. There are two
main differences with modules:

• Filters are plugins loaded and executed by the FlowVR daemon. They need to be written in C++
(not the case for modules). Being close to the daemon they have access to internal structures for
a better performance and more flexibility.

• Filters have full access to the full message queues while modules only have access to the last
message available. Thus filters are commonly used to merge or resample messages for instance.
This extra flexibility make them a little more complex to program.

Synchronizers are a special case of filters having only STAMP input and output ports. In this document
we usually do not distinguish between filters and synchronizers ans usually use the general term filter,
unless explicitly stated.
A VOIR doStart useless for non threaded fitlers ? See greedy sync where it is used. fitler== 1 thread

indépendant du noyau ? FIN
A VOIR Dan la calsse de base des synchronizers: int advance; ///< Number of order to send before waiting

for the end of an iteration int nbOrder; ///< Number of order sent virtual void doStart(plugd::Dispatcher*
dispatcher); FIN

67

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugd/messagequeue.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugd/outputmessagequeue.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugins/baseobject.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugins/filter.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugins/synchronizor.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugins/flowvr.plugins.PreSignal.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/flowvrd/src/plugins/filters/flowvr.plugins.FilterIt.cpp

CHAPTER 8. FILTERS AND SYNCHRONIZERS 68

8.1 Inheritance and Plugin Loader

Filters must inherit from the Filter class (synchronizor for synchronizers).
Filters (and synchronizers) must implement a special virtual method and create an instance of a
GenClass templated object that the daemon uses to get an handle on the filter class to create an
instance and execute it.
Mandatory method to implement in each filter class:

virtual Class* getClass() const
{
return &FilterItClass;

};

Mandatory creation of an instance of GenClass:

flowvr::plugd::GenClass<FilterIt> FilterItClass("flowvr.plugins.FilterIt", //
must corespond to the name of the plugin once compiled.

"free form text about the filter ", // filter description
&flowvr::plugins::FilterClass// name of the class the

filter inherit from concatenated with the string "Class
"

);

8.2 Filter Callbacks

A VOIR synchronizer in .net.xml (and not synchronizor) ? FIN
Programming a filter relies on filling three main callback functions (virtual methods) we detail in the
following.

8.2.1 Dispatcher

The callback methods all provide a pointer to the dispatcher. The dispatcher is a special plugin in
charge of executing some special actions for the daemon. Some filter related methods, on message
queues for instance, need to provide this pointer to the dispatcher to trigger some actions.

8.2.2 init

virtual flowvr::plugd::Result init(flowvr::xml::DOMElement* xmlRoot,

flowvr::plugd::Dispatcher* dispatcher):

• xmlRoot: parameter xml tree.

• dispatche: pointer to the dispatcher.

Called at filter initialization (after plugin loading). This is in this method that should be implemented
any action that needs to take place at initialization before any message reception.
This method should first start by calling the parent init method. For a filter for instance:

flowvr::plugd::Result result = Filter::init(xmlRoot, dispatcher);
if (result.error()) return result;

A VOIR liens vers la definition de parametres si on en fait une FIN Each filter can define parameters
that get values at starting time. When starting the application, the parameter values are forwarded to
the filter by the daemon as an XML tree. This tree has a simple structure, a <parameter> root having

CHAPTER 8. FILTERS AND SYNCHRONIZERS 69

as children the list of parameters in the form <paraname>value</paramname>. These xml trees
are part of the .net.xml intermediate file generated for each application. Here is a tree example:

<parameters>
<info>....some text about the component...</info>
<trace>0</trace>
<freq>1</freq>

</parameters>

The <parameter> tree always contain 2 special parameters that should be ignored at this point:

• <info>: a string containing some information about the filter.

• <trace>: set to 1 if this object is traced (see chapter 14), 0 otherwise.

Parsing the tree using the XML DOM parse provided with FlowVR (include/flowvr/xml.h and in-
clude/flowvr/tinyxml.h) enables to retrieve the parameter values. Here is a short example to retrieve a
frequency parameter:

// read the freq parameter node
xml::DOMNodeList* lfreq = xmlRoot->getElementsByTagName("freq");

if (lfreq != NULL && lfreq->getLength()>=1)
{

// Get the freq parameter value (string)
std::string fr = lfreq->getTextContent();

// Convert to float
if (!(fr.empty())) freqHz = flowvr::ftl::convertTo<float>(fr);

if (freqHz > 1000000.0f || freqHz < 1.0f)
{
return Result(flowvr::plugd::Result::ERROR,"Incorrect frequency value

");
}

}
else

return Result(flowvr::plugd::Result::ERROR,"frequency parameter not
found");

delete lfreq;

Next, in the method the filter must declare its message queues, i.e. its ports. First call the initInputs
and initOutputs for initializing the vector queues vectors (argument is the number of ports). Next,
give a name to each port (setName on each queue):

//initialization of the input message queue (rely on a enum to identify
each one)

initInputs(NBPORTS);
inputs[IDPORT_IN]->setName("in");
inputs[IDPORT_ORDER]->setName("order");

//initialization of the output message queue (just one port no enum)
initOutputs(1);
outputs[0]->setName("out");

If known it is also convenient to set the output message type, STAMP or FULL at this point:

outputs[0]->msgtype = Message::FULL;

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/xml.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/tinyxml.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/tinyxml.h

CHAPTER 8. FILTERS AND SYNCHRONIZERS 70

The output message type is sometimes set in the newStampListSpecification method, when it is
defined according to the type of message received on a given input port.
The input message type is actually defined
A VOIR terminer: plutot au niveau du component non ? FIN
A VOIR (msg.data.valid() FIN A VOIR pointer to themessage queue api FIN . A VOIR type

du port vraiment important. A priroi non pour les outputs. Important pour les inputs (drive the auto connection
seting. C’est une commodite pour du code de type if (outputs[0]->msgtype == Message::FULL) m.data =
alloc(0); FIN

8.2.3 newStampListSpecification

newStampListSpecification(int mqid, const Message& msg, plugd::Dispatcher*
dispatcher):

• mqid: the index in the input message queue vector the message comes from.

• msg: the received message.

• dispatcher: pointer to the dispatcher.

This method is called once per connected input message queue at initialization when receiving the sys-
tem message containing the stamp list specification (see subsection 7.4.2) of future incoming messages
on that queue (this special message has the num stamp set to -1).
This is in this method that should be implemented any action that needs to take place at initialization
but that need information contained in the first system messages (stamp list specification for instance).
For instance filters that forward messages on their output queue with the same stamp list specification
than incoming messages, retrieve the stamp list specification from the received message, copy it for
the output message queue and set this new specification by handling it to the dispatcher:

// System message received on first input port.
if (mqid==0)
{
// Copy the stamp list for the first output message queue.
outputs[0]->stamps = inputs[0]->getStampList();
// Tell the dispatcher to take into account this specification
outputs[0]->newStampSpecification(dispatcher);

}

8.2.4 newMessageNotification

newMessageNotification(int mqid, int msgnum, const Message& msg,

plugd::Dispatcher* dispatcher).

• mqid: the index in the input message queue vector the message comes from.

• msgnum: the num stamp of the recieved message.

• msg: the received message.

• dispatcher: pointer to the dispatcher

This method is called each time a new message is recieved on an input port. This method usually
implements the main task filters are designed for.
Because one input port can receive messages while an other input port has not yet received its stamp
list specification, it can be useful in this method to proble the state of a given input port calling:

CHAPTER 8. FILTERS AND SYNCHRONIZERS 71

if (!inputs[IDPORT_IN]->stampsReceived()) return; // stamp specification not
yet received on that port.

A VOIR peut etre une pointeur vers la manipulation des messages FIN

8.3 Ports: Input and Output Message Queues

Filters, like modules, have input and output ports. To gain in flexibility compared to modules, these
ports are handled through a different API. A filter handles input and output messages queues. A
message queue is a buffer of messages that can be viewed as FIFO queue. Filters do not have any
predefined port.

8.3.1 Port Vectors

Input messages queues (resp. output message queues) are stored separately in an inputs (resp.
ouputs) vector.
Here are the main methods filters support to handle their two vector of ports (include/flowvr/plugin-
s/baseobject.h):

• void initInputs(int num) initOuputs(int num) : initialize the vector of message
queues with num ports. Must be called before any operation on any message queue.

• int addOuputs(int num) or addInputs(int num): add num queues to the existing vec-
tor.

• inputs and outputs: the input and output message queue vectors. Access to a given queue
using the [] operator.

8.3.2 Messages

Message queues handle classical FlowVR messages composed of a stamp list and data buffer (see chap-
ter 7).

8.3.3 Input Message Queues

An input message queues is a queue (see Figure 8.1). Received messages are accumulated at the back.
Oldest messages are at the front. Message queue indexing is based on the num stamp of the received
messages. The stamp starts at 1 ans increases monotically for each new message. In case a message
has a num stamp strictly greater that the stamp of the latest received message, the queue is filled with
Message::Null messages to ensure the received message is stored at the num position in the queue
as expected (this mechanism should never be triggered unless some filter miss use the num filter).
The main methods on an input message queue (include/flowvr/plugd/messagequeue.h) are the follow-
ing:

• void setName(const std::string &myname): set the name of the input message queue.

• int frontNum() : get the num stamp value of the oldest message in the queue.

• const Message& frontMsg() : get the oldest message.

• const Message& backMsg() : get the newest message.

• void eraseFront() : erase the oldest message.

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugins/baseobject.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugins/baseobject.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugd/messagequeue.h

CHAPTER 8. FILTERS AND SYNCHRONIZERS 72

Figure 8.1: Input Message Queue Structure

• void setFront(int num) : arase all messages having a num stamp value stricly smaller than
num. If the queue is empty num becomes the new front index.

• void erase(int num) : free the message in the queue having the specified num stamp value
(message still in the queue but is content not valid any more).

• int size() : return the queue size (number of messages currently stored)

• int backNum() : return the num stamp value of the most recent message in the queue.

• int frontNum() : return the num stamp value of the oldest message in the queue.

• int empty() : check if the queue is empty.

• const Message& get(int num) : get message with num stamp value. Return a
Message::Null message if not available.

• bool stampsReceived() : return true if the stamp list specification (see subsection 7.4.2)
message has been received (system message with num=-1).

• StampList& getStampList() : return the stamp list specification associated with this port.

• bool isConnected() : return true if the input port is connected to an other component in
the current application.

A VOIR work to do on valid/clear/ Message::Null: for instance why message.clear() does not set the message

to null ? FIN

8.3.4 Output Message Queues

Here are the main methods to access the messages of an output message queue (include/flowvr/-
plugd/outputmessagequeue.h):

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugd/outputmessagequeue.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/plugd/outputmessagequeue.h

CHAPTER 8. FILTERS AND SYNCHRONIZERS 73

• void setName(std::string portname) : set the name of the output message queue.
Mandatory for each output message queue.

• StampList stamps: the stamp list specification (see subsection 7.4.2) for this port.

• void newStampSpecification(Dispatcher* dispatcher, int it=0) : set the
stamp list specification for this queue. Must be called once, before processing any message.
The stamp list specification must be properly set before to make this call. Usually caled in the
init() method of the filter or in the newStampListSpecification(). The it optional
parameter enables to overwrite the default value assigned to the it stamp in the system message
built form the specification.

• void put(MessagePut msg, Dispatcher* dispatcher, int num=-1) : put the
message msg into the output message queue and keep the dispatcher informed. The message
can be of type messagePut or messageWrite. The num message stamp is set automatically
unless overwritten by the num value given as the third argument.

• int getNextNum(): return the num stamp value to be used for the next message.

• const string& getName(): return the message queue name.

• Message::Type msgtype: output message queue type (STAMP or FULL). If an output port is
set to STAMP, it will emit only STAMP messages and any attempt to send messages to a input port
expecting FULL messages will produce an error. A FULL output port must emit messages with
a payload (can be of size 0). A STAMP message can always be extracted from a FULL message
depending on the destination needs (see ??), thus declaring output ports as FULL is more general.

A VOIR msgtype: is this really necessary or just syntactic sugar ? FIN
A VOIR getNextNum(): reading the code it seems that it returns the num of the next sent message FIN

8.4 Standard filters

The standard filters are defined (and commented!) in the filters.py library. There are examples for
many filters in flowvr-examples/filters.
A <filterclass> node must be specified containing the class name of the filter in a java-like no-
tation (full class name with namespace components separated by periods). If the filter requires some
initialization parameters they must be specified within a parameter.
Each time a filter is instantiated, it is added to the .net.xml and .cmd.xml files, indicating to the
flowvrd daemon it has to load the corresponding plug-in.
FlowVR provides several predefined filters. Here is a short description for each of them and the
corresponding plug-in:

• FilterDiscard: Discard all messages from input if filter not open, forward them all on output
otherwise. Corresponding plug-in loaded by daemon : flowvr::plugins::Discard

• FilterIt: Forward on its output the messages received on its input having the same ’it’ numbers
than the ones received on the order port. Discard other messages (filter usually used with a
synchronizer) Corresponding plug-in loaded by daemon : flowvr::plugins::FilterIt

• FilterLastOrNull: Forward on output messages the last input message or null message if
there is no input. Discard other messages. Corresponding plug-in loaded by daemon :
flowvr::plugins::FilterLastOrNull

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1Discard.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1FilterIt.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1FilterLastOrNull.html#_details

CHAPTER 8. FILTERS AND SYNCHRONIZERS 74

• FilterMergeIt: Merge messages received on input port into one message sent on output port.
More precisely, when it receives a message on the ’order’ port, it inspects the icomming message
queue (’in’ port), discard all messages with a non null ’scratch’ stamp value, concatenate all
other messages in one message sent on ’out’ port. This message has its ’scratch’ stamp set to 0
and its ’stamp’ stamp set to the sum of all ’stamp’ stamps of the concatenated messages. The
name of the ’scratch’ and ’stamp’ stamps are read from the omponent parameter list. These
parameters are optionals Corresponding plug-in loaded by daemon : flowvr::plugins::MergeIt

• FilterMerge: Merge nb successive messages received and send on output. Messages can be
discarded using the stamp given with the scratch parameter. The stamp given with the stamp
parameter is combined in the merged message. Corresponding plug-in loaded by daemon :
flowvr::plugins::MergeMsg

• FilterMultiplex: Forward messages received on inputs in0,...,innb-1 on output. Change
the it and num stamps to ’hide’ multiplexing Corresponding plug-in loaded by daemon :
flowvr::plugins::MultiplexFilter

• FilterPreSignal: Filter that adds nb (a paramater) inital messages, then forward incoming mes-
sages to output (used to boot cycles). 1 parameter. ’nb’: number of initial messages Correspond-
ing plug-in loaded by daemon : flowvr::plugins::PreSignal

• FilterRotate: Alternatively dispatch messages received on in0, in1, ..., inNb-1 on output. 1
Corresponding plug-in loaded by daemon : flowvr::plugins::RotateFilter

• FilterScatter: Split input message in nb parts of size elementsize and send each part to output
out0, out1, ..., outNb-1 Corresponding plug-in loaded by daemon : flowvr::plugins::Scatter

• FilterSignalAnd: Wait for receiving one message per input (nb inputs), and then send on
output (use stamp read from message on in0) Corresponding plug-in loaded by daemon :
flowvr::plugins::SignalAnd

• FilterUnrotate: Alternatively receives an message on each input and forward it on output Corre-
sponding plug-in loaded by daemon : flowvr::plugins::UnrotateFilter

Extra filters can be programmed if required (see chapter 8).

8.5 Standard synchronizers

A synchronizer is an other special type of filter that receives and send only stamp messages. It is
dedicated to messages synchronization.
It is instantiated using a syntax similar to filters (see section 8.4) by adding a <synchronizer> node
and specifying the synchronizer to use in a <synchronizerclass> node.
FlowVR provides the following synchronizer (see flowvrd/src/plugins/sync for an up-to-date list)::

• GreedySynchronizer: A synchronizer which chooses the last available message. Every time it
receives a message on endIt port, it looks for the most recent message received on stamps port
and sends to order port the stamp of this message. Used for implementing greedy (subsampling)
filtering. Corresponding plug-in loaded by daemon : flowvr::plugins::GreedySynchronizor

• MaxFrequencySynchronizor: Send a first message and then send output messages at
min (incoming message rate, freq rate) Corresponding plug-in loaded by daemon :
flowvr::plugins::MaxFrequencySynchronizor

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1MergeIt.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1MergeMsg.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1MultiplexFilter.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1PreSignal.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1RotateFilter.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1Scatter.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1SignalAnd.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1UnrotateFilter.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1GreedySynchronizor.html#_details
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/doc/html/classflowvr_1_1plugins_1_1MaxFrequencySynchronizor.html#_details

Chapter 9

Application Execution

9.1 The FlowVR Daemon: flowvrd

FlowVR requires a daemon on each host involved in a FlowVR application execution, including the
host where the application is launched from.

9.1.1 Launching the FlowVR Daemon

A FlowVR daemon must run on each host running modules. The command line for launching a
daemon on a host is:

flowvrd --top

Each daemon can be launched in any order with different user logins (though not recommended).
The --top option request the daemon to monitor and display some data about the plugins and modules
it controls. In particular it gives the frequency of each running module or filter.
To obtain the list of available options for flowvrd :

flowvrd -h

9.1.2 The FlowVR Daemon Command Language

A FlowVR daemon is controlled by a XML based command language. See flowvr-
parse/dtd/commands.dtd for the authorized syntax.
The commands for a given application are stored in the .cmd.xml file.
A FlowVR application developer only have to launch and stop daemons. He should not have to directly
use the command language.
If you are keen to learn more, please refer to the developer manual’s daemon section (see section 20.1).

9.1.3 Application Launching

Simply append the application name after FlowVR’s aptly-named launch command :

flowvr Primes

75

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-parse/dtd/commands.dtd
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-parse/dtd/commands.dtd

CHAPTER 9. APPLICATION EXECUTION 76

9.1.4 Start/Pause/Stop

Once the application is running, flowvr listens on the command line for user input. In a nutshell you
can suspend, stop and restart the application.
To suspend the execution:

pause

To resume the execution:

start

To stop the execution (all modules receive an exit signal through the wait call and all plugins the
daemons may have loaded are unloaded):

stop

This command does not stop the daemons.
For a list of all available commands:

help

9.1.5 flowvr-kill

If the application does not start or stop correctly, it can result in zombie processes polluting the ma-
chines. The flowvr-kill utility gets rid of those lingering processes. If your application runs locally,
simply call:

flowvr-kill

If you are running a distributed application, simply provide the list of hosts involved:

flowvr-kill --list ’host1 host2 host3’

It is also possible to list the hosts in a file and provide the file to flowvr-kill. You only have to list
the hosts, one per line, and save the file as txt.

flowvr-kill --hostfile mycluster.txt

When a module calls the init() method, it creates a temporary file locally in the /.flowvr directory.
This files stores the PID of the module and the name of the machine. When flowvr-kill is called it
just inspect on each machine the /.flowvr directory and kill all listed processes.

9.2 Run-time Environment

FlowVR run-time environment (see chapter 20) relies on a daemon that runs on each host of the target
machine. This daemon is in charge of:

• registering each module running on its host,

• implementing all message exchanges transiting through its host,

• executing all local filters.

CHAPTER 9. APPLICATION EXECUTION 77

 Daemon

 Process2

 Process1
Shared
Memory

Network

Figure 9.1: The FlowVR daemon acts as a broker between modules (green ellipses), using filters
(orange diamonds) for resampling and simple data processing, and synchronizers for synchronization
policies (pink rectangle).

Modules are launched directly using their own command. FlowVR does not impose a specific launch-
ing mechanism to ease portability of existing code. For instance, MPI code can use mpirun. Once
launched, each module registers at the daemon of its host.
The daemon manages shared memory segments used to store all messages it handles. Local modules
and filters have a direct access to this memory under the control of the daemon. The daemon takes
care of memory allocation, ensures safe read and write accesses and garbage collection. Having direct
access to the shared memory segment saves data copies.
When a module executes a put, it tells the daemon that the message is ready to be forwarded to its
destination. If the destination module runs on the same host, the daemon provides a pointer to the
module that directly reads the message from the shared memory. If the message has to be forwarded
to a distant module, the daemon sends it to the daemon of the distant host. The target daemon retrieves
the message, stores it in its shared memory segment and provides a pointer to the destination module,
which processes it exactly as for local communications.
Each daemon stores a table of actions to perform on messages according to their origin. An action can
be a simple message routing, or the execution of a filter. Filters are plugins loaded by the daemons
when starting the application. Here, an important difference between a filter and module appears. A
filter is necessarily a daemon plugin, while a module is an external process or thread. This design is
required to provide the best flexibility for programming modules, while providing minimum overhead
in complex filtering networks.
The daemon and its plugins are multi-threaded, ensuring a better performance scalability on multi-core
and multi CPU architectures.

9.3 Application Deployment, Execution and Debugging

Application processing is controlled with a Python script, and deployment and execution is controlled
from the FlowVR command called flowvr (see section 5.6). flowvr follows several steps (see ??).
Starting an application usually requires the user to set the values for several parameters, eg. the the
mapping of modules on the target host machines.
flowvr produces several intermediate files. Three of them are worth to inspect when debugging:

CHAPTER 9. APPLICATION EXECUTION 78

 tictac.py

tictac.run.xml tictac.cmd.xml

host 1

flowvrd

put

host 2

flowvrd

get

Script
execution

flowvr
flowvr

Module launching commands

Intermediate files

Daemon commands

Start modules on target hosts
Forward commands to daemons
 and start the application

Appy script (Python)

Figure 9.2: The FlowVR front-end command flowvr starts from a parametrized high level description
of the application (top) to produce intermediate files (xml) and launch the application.

CHAPTER 9. APPLICATION EXECUTION 79

• The .net.xml file that contains the description of the network graph. The flowvr-glgraph
utility (see section 16.1) enables to produce a browsable network graph image.

• The .run.xml file that contains the command line used to start each module.

• The .cmd.xml file that contains commands to the flowvr to launch filters and set up links.

FlowVR comes with a built-in trace capture tool (see chapter 14) that is simple to activate. From these
traces, the tool flowvr-gltrace computes a visual representation (see Figure 14.1) of the activity
of the various components and the message flows.
Often when starting for the first time an application on a cluster, users run into basic cluster configura-
tion issues. Make sure that you have a ssh access to the various nodes of your target machine. It also
very convenient if all the nodes share the same file system (the norm on most clusters), easing access
to the required binaries and libraries. Often you also have to change the system settings to enable the
allocation of a large shared memory segment. If some components open display windows, make sure
you set accordingly the authorizations of the windowing system. FlowVR is daemon based. Before
starting an application, you need to run one FlowVR daemon on each machine host involved in the
application.

9.4 Using an MPI network layer

By default, the FlowVR daemon communicates over TCP/IP networks (flowvr.plugins.NetTCP).
Relying on the TCP/IP protocol may not give the best performance on high performance networks such
as Infiniband or Gemini. In this case, we provide two plugins that rely on MPI to transport messages.
These plugins enable better communication performance if your MPI implementation supports native
communication over such networks.

9.4.1 NetMPI vs NetMPIm plugins

• flowvr.plugins.NetMPI relies on a mix of TCP and MPI communication using the
MPI_THREAD_FUNNELED option (well supported by all MPI distributions). So far this plugin
gave us the best performance.

• flowvr.plugins.NetMPIm fully relies on MPI communications using the
MPI_THREAD_MULTIPLE option (not well supported by all MPI distributions)

9.4.1.1 NetMPI and NetMPIm plugins Work with

• OpenMPI (no high performance Infiniband support, must be preloaded using the LD_PRELOAD
environnement variable)

• mpich, mpich2, mpich3 (but no high performance Infiniband support)

• mvapich (supports Infiniband, tested thoroughly)

OpenMPI suffers from a bug that makes the daemon crash when using a NetMPI(m) plugin
(https://bugzilla.redhat.com/show_bug.cgi?id=801945). It is triggered when the library is loaded when
loading the plugin with dlopen. This can be prevented by preloading the OpenMPI library when
launching the daemon using the LD_PRELOAD environement variable.

CHAPTER 9. APPLICATION EXECUTION 80

9.4.2 Running flowvrd with MPI

The only change required to use these plugins is to launch the daemons appropriately.
Sample command:

mpirun -np nbDaemon -machinefile /path/to/machinefile -env
MV2_ENABLE_AFFINITY 0 flowvrd -s 1G --network flowvr.plugins.NetMPI

MV2_ENABLE_AFFINITY is required with the mvapich implementation. It enable having either
MPI_THREAD_FUNELED or MPI_THREAD_MULTIPLE at MPI initialization. Other options may be
required for other MPI implementations.

9.4.3 Enabling top output with MPI

To obtain a readable "top" output, you need to create the following script launchDaemon.sh:

flowvrd -f --top -s 1G --network flowvr.plugins.NetMPIm > /tmp/logsDaemon.
txt 2> /tmp/logsDaemon.err.txt

and launch the daemons using:

mpirun -np nbDaemon -machinefile /path/to/machinefile -env MV2_ENABLE\
_AFFINITY 0 ./launchDaemon

tail -f /tmp/logsDaemon.txt

Chapter 10

Language bindings

10.1 Python Module Programming

10.1.1 Interface

For Python modules, there is a single entry point:

• lib/flowvr/python/flowvr.py

10.1.1.1 initModule

A module must first be registered and initialized to connect to the flowvr daemon.

module = flowvr.initModule(ports)

This method takes as argument:

• ports: a vector of user defined input and output ports (Section 6.2.2).

• instancename and modulename: these optional arguments are usually omitted. If set they
overwrite the module name automatically set by FlowVR using modulename/instancename

as new name.

10.1.1.2 wait

A classical python module loop looks like this :

while module.wait():
work to be done during an iteration

wait returns zero: end the module execution now
module.close()
more things to do specific to this module to properly stop it.

10.1.1.3 get

message = inport.get()

See the original section (see 6.2.1.2) for more information.

81

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/lib/flowvr/python/flowvr.py

CHAPTER 10. LANGUAGE BINDINGS 82

10.1.1.4 put

outport.put(message)

See the original section (see 6.2.1.3) for more information.

10.1.1.5 getStatus

This method returns the status of the module, zero if an error occurred or if the module needs to be
stopped. All other methods also return the status after completion.

10.1.1.6 close

This method should be called to properly exit the module.

10.1.1.7 alloc

x = module.allocString(’hi there!’)

If performance isn’t your first priority, it is easier to construct a string and transfer it to the buffer
afterwards.
See the original section (see 6.2.1.6) for more information.

10.1.2 User Defined Ports

The information related to each port is:

• its direction (input or output)

• whether it’s a full or stamps port

• its blocking state (blocking or non-blocking)

• for output ports, the type of the stamps it plans to send out.

10.1.2.1 Port Vector

Ports need to be declared before the module initialisation. All user defined ports need to be stored in a
vector passed as argument of initModule (see subsection 6.2.1).

10.1.2.2 Output Port

outport = OutputPort(myname)

Output port constructor:

• myname: port name

• mystamps: a stamp list specification (see subsection 7.4.2) if the messages sent on that port
will carry user defined stamps. This argument is optional and the stamp list specification can be
specified latter.

CHAPTER 10. LANGUAGE BINDINGS 83

• bOwn: only used when passing a stamp list specification in mystamps. If set to true the
stamplist is deleted upon destruction of the port, not otherwise.

10.1.2.3 Input Port

inport = InputPort(myname)

Input port constructor:

• myname: port name

• mystamps: The stamp list specification usually does not need to be specified here (leave the
default NULL value) as it will be set by the system at initialisation according to the stamp list
specification of the incoming messages.

• bOwnStampList: only used when passing a stamp list specification in mystamps. If set to
true the stamplist is deleted upon destruction of the port, not otherwise.

• a stamp list specification (see subsection 7.4.2) if the messages sent on that port will carry user
defined stamps. This argument is optional and the stamp list specification can be specified latter.

10.1.2.4 Example

In this example we create an extra input and output port. We also add stamps to the output port:

declare an input and output port
outport = flowvr.OutputPort(’out’)
inport = flowvr.OutputPort(’in’)

add an int stamp
outport.addStamp("mycounter", int)

prepare the ports vector
ports = flowvr.vectorPort()
ports.push_back(inport)
ports.push_back(outport)

Caevat in Python: storage for inport, outport or ports is managed by Python, so they may be
garbage-collected when they get out of scope, crashing the application. This can be avoided by making
them global variables or by telling the garbage collector to forget them with x.this.own(False).

10.1.3 Event Ports

It is possible to have non-blocking input ports called event ports. In opposite to classical input ports,
the wait unlocks even though no new message might be available on event ports. Thus, if no message
was available when wait was called, get returns an invalid message (make sure to test it).
Event ports can be convenient for grabbing messages that are sent episodically, i.e. at a rate signifi-
cantly lower than the expected module iteration rate. Event ports are typically used to receive control
messages from a GUI.
If a module has only event ports and the beginIt port is not connected, it will never block at the wait
call. This may lead to a free running module that consumes much more CPU resources than expected.
Messages can be accumulated on input ports. For instance, if many messages are sent between two
iterations of the event port holder, it will possibly lead to buffer overflows. Inserting a filter to erase or
merge accumulated messages might be required to avoid such pitfall.

CHAPTER 10. LANGUAGE BINDINGS 84

The same behavior can be obtained by putting an adequate filter before a classical input port. This
approach has the advantage of changing the module behavior for a given application without having
to change the module code. Generally we advice not to abuse of event ports that tend to affect the
genericity of modules.
Being an event port or not need to be set before calling the initModulemethod (see subsection 6.2.1),
either:

• At port creation (see subsubsection 6.2.3.3)

• Setting to true the port non blocking flag (call after initModule has no effect):

InputPort::setNonBlockingFlag(bool bBlock)

A VOIR Et l’initialisation des modules paralléle ? FIN

10.1.4 Probing Ports State

• bool Port::isConnected(): return true if the port is connected. Call valid only after the
first wait.

• bool Port::isInput() and bool isOuput(): return true if match the expected port
type.

• bool InputPort::isNonBlockingPort(): return true if event port (see 6.2.3.4).

10.1.5 Running modules

For Python modules, the cmdline (see Section 5.7) contains "python module_path.py" if the
module path is absolute or relative to the current directory, or "python -m module_name.py"
if it can be found in the PYTHONPATH.
Remember that for a distributed execution each module binary needs to be accessible from the nodes
where the module is executed (copy the binaries on these nodes or have rely on a distributed file system
like NFS).

10.1.6 Messages and buffers

The Python API is simpler and more limited, because it does not need to be as optimized as the C++
version.

10.1.6.1 Stamps

Stamps in messages are accessed by name. The StampInfo structure is not manipulated explicitly.
They are declared as:

outport = flowvr.OutputPort(’text’)

outport.addStamp("mycounter", int) # integer stamp
outport.addStamp("myarray", int, 3) # fixed array of 3 ints
outport.addStamp("mystring", str) # string

Setting the stamps of an output message:

CHAPTER 10. LANGUAGE BINDINGS 85

outport.stamps must be passed to the constructor if non-standard stamps will be
output.

message = flowvr.MessageWrite(outport.stamps)

message.setStamp("mycounter", 123)
message.setStamp(("myarray", 1), 456) # set element 1 of the array
message.setStamp("mystring", "toto")

outport.put(message)

Reading stamps from an input message:

message = inport.get()
mycounter = message.getStamp(’mycounter’)
arr = message.getStamp(’myarray’) # get the full array

stamps = message.getStamps() # dictionay with all stamps
mycounter2 = stamps[’mycounter’]

10.1.6.2 Data

The Buffer data is exposed as Python strings.
Setting the data of a message:

message = flowvr.MessageWrite()
message.data = module.allocString("toto")

Reading from a buffer:

message = inport.get()
message.data.asString()

10.1.6.3 Python “chunks”: converting binary data to/from strings

Since binary data in FlowVR is exposed as strings by the API, some functions are required to convert
data from/to Strings. These are standard Python functions.
Homogeneous arrays:

import array

array -> string
a = array.array(’f’) # 32-bit floating point array
a.append(1.2)
a.append(3.4)
s = a.tostring() # s=’\x9a\x99\x99?\x9a\x99Y@’

string -> array
x = array.array(’f’)
x.fromstring(s)

Structured data:

import struct

structured data -> string
s = struct.pack(’if’, 1, 4.5)

string -> structured data
x, y = struct.unpack(’if’, s) # x = 1, y = 4.5

CHAPTER 10. LANGUAGE BINDINGS 86

Numpy is the standard matrix manipulation library in Python. It can also convert to/from binary data
in strings:

import numpy

numpy array -> string
a = numpy.zeros((10,2))
a[3,0] = 1.54
s = a.tostring()

string -> numpy array
numpy.fromstring(s, dtype = ’float64’)
a.reshape((10,2))

Part IV

Examples

87

88

Table of Contents

11 Primes 90

11.1 Application Instantiation and Execution . 90

11.2 Directory Structure . 90

11.3 Compiling FlowVR modules . 91

11.4 Environment Variables . 91

11.5 Modules . 92

11.5.1 Module implementation . 92

11.5.2 The event processing loop . 92

11.6 Component Assembly . 93

11.6.1 Without synchronization . 93

11.6.2 Synchronization basics . 94

11.6.3 Synchronizing multiple inputs . 95

11.6.4 Composites . 96

11.6.5 Multiplying compute modules . 97

12 Fluid 100

12.1 Compilation . 101

12.2 Instantiation and Execution . 101

12.3 The Simulation Module . 102

12.3.1 Module and Metamodule Components . 102

12.3.2 The Code Module . 102

12.4 The visualization and Interaction Module . 103

12.4.1 The Event Capture and Visualization Code 104

12.4.2 The Event Capture and Visualization Modules and Metamodules Components . 104

12.5 Component Assembly . 105

12.5.1 Sequential Fluid . 105

12.5.2 Parallel Fluid . 105

Chapter 11

Primes

This is the main example we use through this manual. Source code is installed in share/flowvr/exam-
ples/primes. Primes can be used as a template to start developing your own application.
This application shows a classical structure coupling a simulation, a visualization and an interaction
interface. The simulation iteratively computes prime numbers. The visualization displays them over a
spiral. The user can interactively rotate the view using arrow keys.
More precisely:

• ’compute’ : a parallel computation. Each process iteratively tests some integers for primality,
and sends its latest results each time a certain amount of prime numbers have been found. Only a
few numbers are calculated by iteration in order to maintain a rather smooth cooperation between
the components of the application.

• ’visu’ : a visualization process based on OpenGL and Glut. A spiral is drawn, with points
plotted only when the angle in radian is prime. This condition let appear a ’Galaxy-like’ pattern
well known in Mathematics and used as an heuristic for very big prime numbers calculation.
The display is constantly updated as new numbers are computed, and a zoom is automatically
performed to fit the window area. As the application is running in an infinite loop, the process
is limited to the last million of numbers received.

• ’capture’ : an input dedicated process retrieving the keyboard state using classical Glut function
calls. Cursor keys hit information is transmitted to the visualization system which rotates the
display accordingly.

As this example is primarily a case study, code and algorithms have been deliberately kept unoptimized
to favor simplicity and clarity.

11.1 Application Instantiation and Execution

Refer to the Getting Started Section for compiling, instantiating and executing Primes (see chapter 2).
Make sure you have atleast ran the primes application on your local machine.

11.2 Directory Structure

The share/flowvr/examples/primes directory contains:

90

CHAPTER 11. PRIMES 91

• The share/flowvr/examples/primes/make-app.sh utility script file for compiling and installing
the application.

• The share/flowvr/examples/primes/CMakeLists.txt cmake project configuration file.

• The share/flowvr/examples/primes/primes.py the flowvr network generation script.

• The share/flowvr/examples/primes/src directory that contains the module source files as well as
a CMakeList.txt file.

• The share/flowvr/examples/primes/config input files for cmake to produce configuration files.

All the other examples from share/flowvr/examples have the same structure.

11.3 Compiling FlowVR modules

FlowVR modules are plain executables built from C++ code (or other languages for which there exists
flowvr bindings). The compilation flags are:
-I ${FLOWVR_PREFIX}/include
The link flags:
-L ${FLOWVR_PREFIX}/lib -lflowvr-base -lflowvr-mod
Cmake is the build system used in FlowVR and the examples.
Cmake processes CMakeLists.txt files to prepare the compilation of the application. It performs
tasks like searching for FlowVR installation directories, definition of the library and binaries to com-
pile, files to install, etc. Then it generates appropriate Makefiles.
Primes relies on two CMakeLists.txt files, written to be generic enough to be easily reused for
other applications. These files are (hopefully) commented enough to be self-explanatory:

• The share/flowvr/examples/primes/CMakeLists.txt

• The share/flowvr/examples/primes/src/CMakeLists.txt

Running share/flowvr/examples/primes/make-app.sh calls cmake to compile the modules.

11.4 Environment Variables

The primes-config.sh file generated when compiling Primes sets several environment variables
(share/flowvr/examples/primes/bin/primes-config.sh).

• PATH: Add a path to the binary search path to give access to the module binaries. It
makes application more portable by avoiding to provide access path to module launchers like
flowvr-run-ssh (see subsection 20.8.2).

• primes_DIR: Cmake specific environment variable that gives access to the share/flowvr/exam-
ples/primes/cmake/primesConfig.cmake. It enables to reuse this application from other applica-
tions using Cmake. The FIND_PACKAGE(primes) command will succeed and set the variables
primes_FOUND, primes_INCLUDE_DIR.

The primes-config.sh script does is not required to run the application, because relative paths to
the exectuables (bin/capture, etc.) are used.

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/make-app.sh
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/CMakeLists.txt
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/primes.py
www.cmake.org
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/CMakeLists.txt
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/CMakeLists.txt
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/make-app.sh
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/bin/primes-config.sh
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/cmake/primesConfig.cmake
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/cmake/primesConfig.cmake

CHAPTER 11. PRIMES 92

11.5 Modules

Primes relies on three modules. Each module is implemented in a source file.
The 3 modules are:

• compute: loops over integers, and checks whether they are prime numbers. Those that are
found to be prime (with a simple brute-force algorithm) are sent on its output port primesOut.
It can be started in several instances, where each instance is in charge of computing different
prime numbers in parallel. Modules are named compute/0, compute/1, etc., each one having
a primesOut output port.

– share/flowvr/examples/primes/src/compute.cpp

• visu: opens a graphical window and displays the primes received on its primesIn input port
as dots on a spiral. It launches a single module with two input ports keysIn and primesIn

where it receives interaction events and primes numbers.

– share/flowvr/examples/primes/src/visu.cpp

• capture: launch a single module with one keysOut output port where the module sends at
each iteration the arrow key states .

– share/flowvr/examples/primes/src/capture.cpp

11.5.1 Module implementation

Modules are plain executables. They are started by the flowvr executable, that calls
flowvr-run-env, flowvr-run-ssh and/or mpirun.
At startup, a module:

1. sets up a list of input and ouput ports (std::vector <flowvr::Port*> in C++).

2. connects to the localhost’s FlowVR daemon. It registers with a module identifier given by the
FLOWVR_MODNAME environment variable. This is taken care of by flowvr-run-env and the
module source does not need to know about it. The daemon grants access to the shared memory
segment for the module (Section 9.2).

3. enters an event processing loop.

Several modules can be implemented in the same executable. In this case, the steps above are dupli-
cated for each module.

11.5.2 The event processing loop

The event processing loop has the following structure:

// initialize API

...
while (!module -> wait())
{

// read input message
module -> get(input_port, input_message);

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/compute.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/visu.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/src/capture.cpp

CHAPTER 11. PRIMES 93

// handle messge
....

// write output message
module -> put(output_port, output_message);

}

The wait() call returns when there is a message on all its input ports that are connected (non-
connected ports are ignored). wait() returns true when the application should be stopped.
A message is automatically sent on endIt every time the module enters wait(). Symmetrically, the
processing cannot start if beginIt is connected and there is no message on it.
The source of the Primes modules is generously commented, so it is also a good starting point for
module programming.
A detailed description of module programming is in Section 11.5.

11.6 Component Assembly

These modules are assembled in the application root component, primes, defined in the files
share/flowvr/examples/primes/primes.py.
For the sake of pedagogy, Primes defines the example parameter used to browse between several
examples of component assembly. The example can be selected from the command line, like:

python primes.py 0 && flowvr primes

This selects example 0, builds the graph and runs the application. The && ensures that the application
is start up only if the graph building succeeds.
In the following, we describe the different examples, increasing the complexity with each.

11.6.1 Without synchronization

The simplest version is a producer-consumer with the compute and visu modules. This corresponds
to the data-driven policy (see 4.1.1).
The flowvrapp code for this application is simply (example 0):

from flowvrapp import *

computerun = FlowvrRunSSHMultiple(’bin/compute’, hosts = ’localhost’, prefix = ’
compute’)

compute = Module("compute/0", run = computerun)
compute.addPort("primesOut", direction = "out")

visu = Module("visu", cmdline = "bin/visu")
visu.addPort("primesIn", direction = "in")

compute.getPort("primesOut").link(visu.getPort("primesIn"))

app.generate_xml("primes")

A FlowvrRunSSHMultiple object is required for the compute module because it is designed to
be run in several instances.
Depending on the relative speed of the CPU and display, compute may produce prime numbers faster
than visu module can display them. When messages are not consumed, they stack up into flowvrd’s
memory, which eventually fills up and crashes the application.

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/primes.py

CHAPTER 11. PRIMES 94

11.6.2 Synchronization basics

We have to dive a little more into how FlowVR handles messages.

11.6.2.1 Stamps

A stamp (see section 7.4) is a dictionary that maps names to values, it contains at least an iteration
number (named it). Ports are defined to transmit either the message and its stamps (full port), or just
the stamps (stamps port).
The connection rules are:

• ports of the same type can be connected

• full output ports can be linked to stamps input ports: they get only the stamps part of the mes-
sages

• stamps output ports cannot be linked to full input ports

11.6.2.2 Controlling the module’s output rate

In our case, in order to limit the throughput of compute, visu’s endIt can be linked to compute’s
beginIt. This way, compute will not start an iteration before visu has ended processing the previ-
ous (example 1):

...
visu.getPort("endIt").link(compute.getPort("beginIt"))
....

The output rate of the module is effectively controlled in this way.
This example happens to work because compute’s event loop is not exactly as described above: a
message is sent on the primesOut port before the first call to wait(). If the two modules would use
the standard loop above, they would deadlock.
Also, computation and visualization are not simultaneous, because at any moment at least one of the
two modules is waiting for a message to arrive on its input port: they are not executing in parallel.

11.6.2.3 The presignal filter

Intuitively, making them run in parallel just requires that compute is run two times instead of one
before it has to wait for visu’s signal. This could be coded in the compute module. However, hard-
coding the number of puts before the first wait() does not scale: if more modules are in the loop,
this number has to be adjusted also, so it depends on the FlowVR graph topology.
Therefore, there is a special kind of primitive, the PreSignal, that transmits stamps messages, and also
sends a specified number of messages before its first wait.
The pre-signal is not a module, it is a filter. Filters are primitives that run as a thread in the FlowVR
daemon, and that have access to the message queues of their ports. They do not necessarily have a
beginIt and an endIt.
In Flowvrapp, standard filters are defined in the library filters.py. The PreSignal can be used
with:

from flowvrapp import *
from filters import *

...

nb is the number of messages to send before the first wait

CHAPTER 11. PRIMES 95

presignal = FilterPreSignal("presignal", nb = 1)

visu.getPort("endIt").link(presignal.getPort("in"))
presignal.getPort("out").link(compute.getPort("beginIt"))
...

This implements a demand-driven policy (section 4.1.2).

11.6.3 Synchronizing multiple inputs

11.6.3.1 An example

Now the display of visu will be controlled by the user: a new module, capture, opens a window and
waits for key events on the window. It sends messages at a predefined frequency (1 kHz) containing
the state of the arrow keys.
The visu module now has two connected inputs, keysIn and primesIn (example 3):

...
capture = Module("primes/capture", cmdline = "bin/capture")
capture.addPort("keysOut")

capture.getPort("keysOut").link(visu.getPort("keysIn"))
...

It processes the messages only when there is at least one available on each port. In this case, capture
is producing messages faster than compute. Therefore, the capture messages are queueing up in
flowvrd, eventually crashing it.

11.6.3.2 Synchronizers

To avoid this, we use a synchronizer. Similar to a filter, synchronizers are primitives that run in the
FlowVR daemon.
Here, we use a GreedySynchronizer synchronizer. It has two stamps input ports: endIt (yes, it is
an input port) and stamps. Port endIt shoud be connected to a port that outputs messages slowly,
and stamps should be connected to a fast port. Every time a slow message arrives, the last fast
message that arrived is sent on the GreedySynchronizer’s output port, order. Previous fast messages
are discarded.
The GreedySynchronizer handles stamps messages, but here the messages to be subsampled, from
capture’s keysOut, are full: the order port will output only the stamps part of the message.
To get the full message, we can use a FilterIt filter. A FilterIt transmits messages from its in port to
its out port. Transmitted messages are selected on the it field of their stamps, other messages are
dropped. The selected it’s are those of the stamps messages received on the order port of the FilterIt.
By chaining the order ports of the GreedySynchronizer and the FilterIt, it is possible to apply the
same filtering on the stamps and the full message of the "fast" port.
In our case, the slow port is that comming from compute via presignalm and the fast one, that of
capture. Therefore, we can synchronize them with (example 4):

...
sync = GreedySynchronizor("sync")
presignal.getPort("out").link(sync.getPort("endIt"))
capture.getPort("keysOut").link(sync.getPort("stamps"))

filterit = FilterIt("filterit")
capture.getPort("keysOut").link(filterit.getPort("in"))
sync.getPort("order").link(filterit.getPort("order"))

CHAPTER 11. PRIMES 96

filterit.getPort("out").link(visu.getPort(’keysIn’))
...

11.6.3.3 Further reading

More information on the available filters and synchronizers can be found in the Doxygen documenta-
tion, generated in FlowVR’s build directory by

make doc-flowvr

Then point a browser to flowvr/doc/html/index.html in the build directory.

11.6.4 Composites

When FlowVR applications get larger, a linear description of the graph becomes harder to read. It
becomes useful to group primitives together into composites.

11.6.4.1 Grouping primitives

It is convenient to handle a set of related primitives as if it was a single object. Therefore, composites
have a getPort method that can be used to expose the ports of the enclosed primitives. They do not
have an addPort, though: ports can only be created on primitives.
It is conventional to see composites like directories in a file hierachy. Therefore, primitives in a
composite are of the form compositeName/primitiveName (the slash indicates the structure).
Composites can be nested also.
An object that is either a primitive or a composite is called a component.
In our example, a Display composite will group together visu and capture, and simply expose
visu’s primesIn and endIt (example 5):

class Display(Conponent):
""" Displays primes in a window, and a secondary control window """

def __init__(self, prefix):
Component.__init__(self)

visu = Module(prefix + "/visu", cmdline = "bin/visu")
...
capture = Module(prefix + "/capture", cmdline = "bin/capture")
...
presignal = ...
sync = ...

expose input and output ports

self.ports["endIt"] = visu.getPort("endIt")
self.ports["primesIn"] = visu.getPort("primesIn")

display = Display("display")
compute.getPort("primesOut").link(display.getPort("primesIn"))

The prefix is the prefix of all primitives in the composite. Note that the presignal that was used
for both compute and sync has to be duplicated.

CHAPTER 11. PRIMES 97

11.6.4.2 The greedy

In fact, the synchronization pattern described above, that re-samples messages from a fast port to match
the speed of a slower port is classical: it is called a Greedy.
The composite encapsulating the primitives of a Greedy is a Greedy object (defined in the
filters.py library), so the code above can be simplified to (example 6):

...
class Display(Composite):

def __init__(self, prefix):
...
greedy that samples captures’s keysOut at the speed of visu’s endIt
greedy = Greedy(prefix + "/greedy")

visu.getPort("endIt").link(greedy.getPort("sync"))
capture.getPort("keysOut").link(greedy.getPort("in"))
greedy.getPort("out").link(visu.getPort("keysIn"))
...

11.6.5 Multiplying compute modules

Now we can run several instances of compute, to exploit mulitple CPUs or modules on other machines.
We will group the computation modules in a Compute composite.

11.6.5.1 Running more instances

The FlowvrRunSSHMultiple object we saw previously runs several instances of an executable.
It is called like

computerun = FlowvrRunSSHMultiple("bin/compute", hosts = "mohawk mohawk opata", prefix = "compute")

Where:

• the first argument is the command line of the module to run

• hosts is a string with host names, separated by spaces. If a host appears several times, the
module is run in several instances the specified machine.

• prefix is the prefix of the name of the modules.

In this case, the corresponding modules must be constructed like:

module = Module("compute/0", run = computerun)
module = Module("compute/1", run = computerun)
module = Module("compute/2", run = computerun)

The name of the module must match the prefix given to FlowvrRunSSHMultiple, and they are
numbered from 0 to n-1 (n is the number of instances).

11.6.5.2 Merging results

The FilterMerge filter has an arbitrary number of input ports, in0, in1,..., inn-1. When a mes-
sage is available on all of its ports, they are concatenated into a single message that is sent on the out
port. New input ports are added to the FilterMerge with newInputPort().
We have the necessary components for our parallel compute (example 7):

CHAPTER 11. PRIMES 98

class Compute(Composite):

def __init__(self, prefix, hosts):
Component.__init__(self)

computerun = FlowvrRunSSHMultiple(’bin/compute’, hosts = hosts, prefix = prefix
)

hosts_list: convert hosts to a list
hosts_list = hosts.split()
ninstance = len(hosts_list)

merge = FilterMerge(prefix + ’/merge’)
all_beginIts = []

for i in range(ninstance):
compute = Module(prefix + "/" + str(i), run = computerun)
compute.addPort("primesOut", direction = "out")

compute.getPort("primesOut").link(merge.newInputPort())
all_beginIts.append(compute.getPort("beginIt"))

self.ports["primesOut"] = merge.getPort("out")
self.ports["beginIt"] = tuple(all_beginIts)

...

compute = Compute("compute", hosts = "localhost " * 4)
display = Display("display")
compute.getPort("primesOut").link(display.getPort("primesIn"))

A few comments:

• The host = "localhost " * 4 specifies that the compute modules should be run on
the local host in four instances (in Python a string muliplied by an int returns this number of
concatenated strings).

• all_beginIts is a list of all beginIt ports that must be connected. For an input port inC
of a composite, it is acceptable to have a tuple of primitive input ports. This means that a port
connected to inC should be connected to all the primitive ports.

11.6.5.3 On multiple hosts

Running this example in 4 instances on the machine mohawk (which is the localhost) plus 4 more
instances on opata should be a matter of setting

compute = Compute("compute", hosts = "mohawk " * 4 + "opata " * 4)

Unfortunately a few more adjustments are necessary (example 8):

class Compute(Component):
...

for i in range(ninstance):
compute = Module(prefix + "/" + str(i), run = computerun, host = hosts_list[i

])
...

CHAPTER 11. PRIMES 99

class Display(Component):
...

visu.run.options += "-x DISPLAY "
capture.run.options += "-x DISPLAY "

...
app.default_host = "mohawk"

compute = Compute("compute", hosts = "mohawk " * 4 + "opata " * 4)

Where:

• app.default_host is set to localhost, but FlowVR is confused because localhost is the
same as mohawk. Therefore, all primitives should be mapped by default on mohawk.

• since the modules that use X (the graphical interface) are not running on the localhost any-
more, they don’t have access to the DISPLAY variable. It must be explicitly propargated to the
modules with visu.run.options += "-x DISPLAY ".

• the compute modules need to be mapped explicitly on the hosts they are running on, via
host = options. Order does matter.

11.6.5.4 Tree merge

We are in a context where computations are run on many "slave" machines, and the results of the
computations must be merged on a central "master" machine. A simple way of doing this is to send
all the bits to the master and do the merging on it. However, due to the message fragmentation and the
cost of merging results, this may overload the master, while the slaves are idle.
A solution to this is to make sub-groups of slaves and merge the results on these subgroups. This can
be done recursively, in a tree of merges (example 9):

class Compute(Component):

def __init__(self, prefix, hosts, out_port):
...
all_primesOut = []

for i in range(ninstance):
compute = Module(prefix + "/" + str(i), run = computerun, host = hosts_list[i

])
all_primesOut.append(compute.getPort("primesOut"))
...

make_filter_tree(prefix + ’/tree’, all_primesOut, out_port)

...

display = Display("display")

hosts = "mohawk " * 4 + "opata " * 4
compute = Compute("compute", hosts = hosts, out_port = display.getPort("primesIn")

)

The function make_filter_tree needs to know where the input ports and the output port come
from, to decide where to map the tree nodes.

Chapter 12

Fluid

Figure 12.1: The Fluid example. User can mix the fluid using the mouse. Use the v key to switch
between density field and velocity field visualization. Simulation is parallelized with MPI.

100

CHAPTER 12. FLUID 101

The Fluid application (see Figure 12.1) shows an example of module parallelized with MPI. Source
code is installed in share/flowvr/examples/fluid. It fellows the same organization as the Primes example
(see chapter 11) (file organization as well as compilation, instantiation and execution is similar).
The Fluid example is also one of the FlowVR test demo (launched executing flowvr-demo-fluid).
The Fluid example is built from 2 modules, a fluid module that perform a 2D fluid simulation and
a gldens module that capture mouse events and display the fluid. gldens sends the captured mouse
position to fluid that treats it as an obstacle for the fluid. fluid sends the fluid density grid to
gldens for visualization.

12.1 Compilation

fellows the same organization as the Primes example (see chapter 11) (file organisation as well as
compilation, instantiation and execution is similar).
Go to the share/flowvr/examples/fluid directory.
Compilation:

. /make-app.sh

A sequential version of the fluid simulation module is always built (the fluid application). The
parallel version is only built if you have OpenMPI installed (the fluidmpi application)
Source the configuration script to set your environment variables :

source bin/fluid-config.sh

12.2 Instantiation and Execution

12.2.0.1 Fluid (sequential)

The sequential simulation is associated to a simple application network with direct 1-to-1 communi-
cations between both metamodules.
To start it locally on your machine:

python fluid.py && flowvr fluid

You can switch between the velocity or density filled visualization using the v key.
The fluid simulation is based on a grid discretization of the 2D space. The resolution of this grid is
controlled by 2 parameters nx and ny (default 256x256) that can be adjusted from the command line:

python fluid.py 128 128 && flowvr fluid

12.2.0.2 FluidMPI (parallel)

A VOIR adapter pour appy FIN
The parallel MPI simulation is associated to a more advanced network. Because the fluid
metamodule spawn several modules, collective communications (Com1ToN and Com1ToN) are
used (share/flowvr/examples/fluid/include/fluid/components/fluidmpi.comp.h and share/flowvr/exam-
ples/fluid/src/fluidmpi.comp.cpp).
To start it locally on your machine you must rely on the fluidmpi.csv file (share/flowvr/exam-
ples/fluid/fluidmpi.csv) that requests to start 4 of the fluid module on the local host:

share/flowvr/examples/fluid
http://www.open-mpi.org
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/fluidmpi.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/fluidmpi.comp.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/fluidmpi.comp.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/fluidmpi.csv
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/fluidmpi.csv

CHAPTER 12. FLUID 102

flowvr -x fluidmpi

If you have a quad-core processor you should notice some performance gain compared to the sequential
version. If started with the -t, the daemon will display the frame rate of each module. You should
here to notice a higher frame rate compared to starting only one instance of the fluid module. You can
also modify the fluidmpi.csv to distribute the different instances on different machines.
Again the grid resolution can be changed:

flowvr -L -Pfluidmpi:nx=128,fluidmpi:ny=128 -x fluidmpi

Remember that when using the -L option only one instance of each module, even if parallelized, is
started on the local machine.

12.3 The Simulation Module

12.3.1 Module and Metamodule Components

The module component (share/flowvr/examples/fluid/include/fluid/components/modulefluid.comp.h)
is classical. We use the same module for the sequential code and the MPI one: the module ports are
the same.
We have 2 different metamodule components. One for the sequential version using the
flowvr-run-ssh launching command (share/flowvr/examples/fluid/include/fluid/components/meta-
modulefluid.comp.h). It inherits form the MetaModuleFlowvrRunSSH metamodule class. One for
the MPI code using the mpirun launching command (share/flowvr/examples/fluid/include/fluid/com-
ponents/metamodulefluidmpi.comp.h). It inherits from the MetaModuleOpenMPI metamodule code.
Because mpirun launchers are not standard across different MPI implementations, a new metamodule
should be developed if an MPI implementation other that OpenMPI is used.
These metamodules define the grid resolution parameters nx and ny parameters (default values
256x256). In their constructor they add as arguments of the launching command line the value of
these parameters using the instructions :

getRun()->addArg(TokenParameter(*this,"nx"));
getRun()->addArg(TokenParameter(*this,"ny"));

tcTokenParameter tells to get the value from the parameter "nx” hold by the component this (the
current metamodule) when building the launching command line. You can see the final command line
used to start the modules inspecting the generated fluidmpi.run.xml file.

12.3.2 The Code Module

The simulation code is distributed amongst the following files:

• share/flowvr/examples/fluid/include/fluid/Turbulent.h

• share/flowvr/examples/fluid/src/Turbulent.cpp

• share/flowvr/examples/fluid/src/TurbulentBase.cpp

• share/flowvr/examples/fluid/src/fluid.cpp

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/modulefluid.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/metamodulefluid.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/metamodulefluid.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/metamodulefluidmpi.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/metamodulefluidmpi.comp.h
http://www.open-mpi.org/
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/Turbulent.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/Turbulent.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/TurbulentBase.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/fluid.cpp

CHAPTER 12. FLUID 103

In the same code we mix the sequential and parallel version. At compilation if OpenMPI is detected,
the USE_MPI variable is defined, activating all code sections delimited by #ifdef USE_MPI. Compi-
lation produces 2 binaries, a sequential one (share/flowvr/examples/fluid/bin/fluidmpi), and a parallel
MPI based one (share/flowvr/examples/fluid/bin/fluidmpi).
The fluid simulation is based on a 2D grid of cells. At each new iteration a new state is computed for
each grid cell. This state depends on the state at the previous iteration of the considered cell and its
four neighbors. The mouse location on the grid is also required as it is treated as obstacle for the fluid
(received on the positions port). At each iteration the simulation sends the density data on port
density and the velocity data on port velocity.
The fluid is an implementation of the algorithm introduced in the article "Stable Fluids" from J. Stam,
SIGGRAPH 99.
The simulation is parallelized by splitting the grid cell into blocks distributed amongst the different
MPI modules. For instance, a 2kx2k grid is split into 4 2(k−1)x2(k−1) blocks on 4 modules, into 8
2(k−2)x2(k−2) blocks on 8 modules, etc. To perform the necessary computations the state of the cells
on the block borders must be exchanged between neighbors at each iteration. These communications
are managed by MPI (share/flowvr/examples/fluid/modules/src/TurbulentBase.cpp). They are trans-
parent for FlowVR. The mouse position needs to be forwarded to each module. The FlowVR network
takes care of it. After each iteration, the results (velocity and density data) must be sent to the vi-
sualization module for rendering. But the blocks containing the results are distributed amongst the
different MPI module. Once again we delegate to FlowVR the responsibility of assembling the partial
block results from each MPI module to forward to the visualization module a full grid of density data
and a full grid of velocity data.
Each module sends on its density (resp. velocity) output port its density (resp. velocity) block
result. To help FlowVR assemble correctly the different blocks into a full grid, the fluid module
define the additional stamps (see section 7.4) P and N. P stores the coordinates of the first block cell in
the full grid and N the block size :

flowvr::StampInfo StampP("P",flowvr::TypeArray::create(2,flowvr::TypeInt::
create()));

flowvr::StampInfo StampN("N",flowvr::TypeArray::create(2,flowvr::TypeInt::
create()));

These stamps values (stamps are additional data attached to messages that can be easily accessed) are
used by the filters in charge of merging the block to forward to the visualization module a full grid.
The various instances of the fluid module have a different rank defined by MPI at starting time
(the MPI_Comm_rank). They also have can retrieve the total number of running instances through
MPI_Comm_size). Each module instance uses theses values to identify the block it has to process.
The rank is also the index each module instance uses to build its FlowVR id (see subsection 20.7.6):

MPI_Comm_size(MPI_COMM_WORLD,&nb_proc);
MPI_Comm_rank(MPI_COMM_WORLD,&local_proc);
flowvr::Parallel::init(local_proc, nb_proc);

The id is built from the module prefix names returned by the environment variable FLOWVR_MODNAME
suffixed by the rank (fluid/0 for rank 0 module). The variable is automatically set by FlowVR and
forwarded to each module instance by mpirun (see fluidmpi.run.xml).

12.4 The visualization and Interaction Module

A single module takes care of rendering (using OpenGL and Glut), and mouse position capture (Glut
based).

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/modules/src/TurbulentBase.cpp

CHAPTER 12. FLUID 104

12.4.1 The Event Capture and Visualization Code

See share/flowvr/examples/fluid/src/gldens.cpp for the module code.
This module relies on Glut. It has a positions output port (the mouse position), a velocity and
density input port where it receives the data to be displayed.
The loop structure is hidden behind the callback style imposed by Glut.
The module gldens reads the stamp N associated to each message received on the velocity and
density ports to get the size of the received grid. It uses the class GridInputPort to define this
user stamp (see share/flowvr/examples/fluid/src/gldens.cpp):

/// Input Port for 2D Grids with stamp "N" for size
class GridInputPort : public flowvr::InputPort
{
public:
GridInputPort(const char* name="grid")
: InputPort(name),
stampN("N",flowvr::TypeArray::create(2,flowvr::TypeInt::create()))

{
stamps->add(&stampN);

}
flowvr::StampInfo stampN;

};
GridInputPort portDensity("density");
GridInputPort portVelocity("velocity");

Note that you are not required to define a new class to simply add a stamp. For example, the same
module gldens defines a stamp B on the output positions port to send the state of the mouse’s buttons
using the following code:

OutputPort portPosition("position");
StampInfo stampButtons("B",TypeInt::create());
// //
portPosition.stamps->add(&stampButtons);

To add a stamp in a new message, use the write method:

MessageWrite mpos;
// //
mpos.stamps.write(stampButtons,mouse_down);

Similarly, a stamp is read using the read method. Note that this method returns true if the operation
succeeded and false otherwise. In the case where the stamp is not present in the received message an
error is returned when the module reads the stamp. Then you can either decide to ignore the error and
use a default value instead, or stop the execution of the module and warn the user. Our gldens example
module uses the default dimensions if the stamp is not present. The code to read the stamp N in this
case is:

int nx,ny;
if (m.stamps.read(portDensity.stampN[0],nx) && m.stamps.read(portDensity.

stampN[1],ny))
{
// Store the given dimension

}

12.4.2 The Event Capture and Visualization Modules and Metamodules Components

The module and metamodule components are classical (use flowvr-run-ssh as launcher):

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/gldens.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/gldens.cpp

CHAPTER 12. FLUID 105

• share/flowvr/examples/fluid/include/fluid/components/modulegldens.comp.h

• share/flowvr/examples/fluid/include/fluid/components/metamodulegldens.comp.h

12.5 Component Assembly

Related files:

• share/flowvr/examples/fluid/include/fluid/components/fluid.comp.h

• share/flowvr/examples/fluid/src/fluid.comp.h

• share/flowvr/examples/fluid/include/fluid/components/fluidmpi.comp.h

• share/flowvr/examples/fluid/src/fluidmpi.comp.h

12.5.1 Sequential Fluid

Component assembly is trivial for the sequential version (simply direct links between the velocity,
density and positions ports:

• share/flowvr/examples/fluid/include/fluid/components/fluid.comp.h

• share/flowvr/examples/fluid/src/fluid.comp.h

12.5.2 Parallel Fluid

The MPI version requires a more advanced network. Because the fluid module can run several in-
stances, collective communications patterns must be used. Positions sent by the gldens module need
to be broadcasted to the different instances of fluid. For that purpose we use a Com1toN broadcast
pattern.

Com1toN<FilterRoutingNode> * c = addObject<Com1toN<FilterRoutingNode> >("
com1toNPositions");

This broadcast tree (tree arity is controlled by the TREE_ARITY parameter) uses a
FilterRoutingNode filter as intermediate node. This type of filter simply duplicates each
message received on its input ports on all its outputs (the number of output ports is automatically
defined according to the tree arity). A Com1toN pattern has simply two ports in and out that need to
be connected to the source and destination metamodules. Notice that the pattern is connected to the
metamodules and not the modules. Connection between the actual primitive components of Com1toN
and the metamodules is performed automatically once the number of module instances to launch is
known (the tree shape also depends on the number of modules):

Com1toN<FilterRoutingNode> * c = addObject<Com1toN<FilterRoutingNode> >("
com1toNPositions");

setParameter<unsigned int>("TREE_ARITY",2,"com1toNPositions");
link(metamodulegldens->getPort("positions"), c->getPort("in"));
link(c->getPort("out"), metamodulefluid->getPort("positions"));

The mapping of the filters is performed automatically according to the mapping of the connected
modules. Map the modules on different hosts to see how it affect the the filter mapping (flowvr-glgraph
(see chapter 13) can color the nodes according to the machine they are mapped on).
To assemble the velocity or density blocks, we use a ComNto1 pattern with a specific filter
FIlterMerge2D that has been designed to interpret the P and N stamp and reassemble the received

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/modulegldens.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/metamodulegldens.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/fluid.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/fluid.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/fluidmpi.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/fluidmpi.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/include/fluid/components/fluid.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/src/fluid.comp.h

CHAPTER 12. FLUID 106

blocks into a new larger block (flowvrd/src/plugins/filters/flowvr.plugins.Merge2D.cpp). The filter
has 2 input ports in0 and in1 and one output port out. But the Com1toN only work with filters
exposing one in port and one out port (many FlowVR patterns work this way). For that purpose
the merge component is actually built from the primitive filter filtermerge2dprimitive (in-
clude/flowvr/app/components/filtermerge2dprimitive.comp.h) and an encapsulating composite com-
ponent filtermerge2D (include/flowvr/app/components/filtermerge2d.comp.h) that simply hides
the filter interface by connecting the in0 and in1 ports to its in port (idem for the out ports).
filtermerge2d creates an instance of filtermerge2dprimitive and connect it to its ports in the
specific virtual method execute. It also checks that there is actually only 2 primitives components
connected to its in port and forces each of theses primitive to be each one connected to a different
input port of filtermegre2dprimitive (flowvr-app/src/filtermerge2d.comp.cpp). Because this
merging filter has a fixed number of input the tree must have an arity of 2.

file://Users/raffin/FLOWVR/flowvr-suite-dev/flowvrd/src/plugins/filters/flowvr.plugins.Merge2D.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/app/components/filtermerge2dprimitive.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/app/components/filtermerge2dprimitive.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/app/components/filtermerge2d.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/flowvr-app/src/filtermerge2d.comp.cpp

Part V

Utilities

107

108

Table of Contents

13 Flowvr-glgraph: Interactive Graph Visualization 111
13.1 Introduction . 111

13.1.1 Network-based .net.xml . 111

13.1.2 Hierarchical .adl.out.xml . 111

13.2 Launching . 111

13.3 Component representation . 111

13.3.1 .net.xml . 113

13.3.2 .adl.out.xml . 113

13.4 Shared functionalities . 113

13.5 The toolbar . 113

13.6 The view . 114

13.6.1 Normal Mode . 115

13.6.2 Selection Mode (.net.xml) . 115

13.7 The lists . 115

13.7.1 Normal Mode . 115

13.7.2 Selection Mode (.net.xml) . 115

13.8 Searching by Regular Expressions . 115

13.9 Clustered Layout (.net.xml) . 115

14 Trace Capture and Visualization 116
14.1 Trace Capture and Code Instrumentation . 116

14.1.1 FlowVR Defined Events . 116

14.1.2 User Defined Events . 117

14.1.3 Traces for Filters and Synchronizers . 117

14.1.4 Launching Trace Capture . 118

14.2 Trace Visualization . 119

14.2.1 User Interface commands . 119

14.2.2 Graphical Representation description . 120

14.2.3 Customizing Graphical Representation . 120

14.2.4 Visualization in flowvr-glgraph . 121

TABLE OF CONTENTS 110

15 FlowVR Template Library 122
15.1 Overview . 122

15.2 Vectors . 122

15.3 Matrices . 122

15.4 Quaternions . 122

15.5 Command Line Parsing . 123

15.5.1 Declaring Options . 123

15.5.2 Parsing the Command Line . 123

15.5.3 Retrieving Values . 123

16 Other Tools 124
16.1 flowvr-graph: static network images . 124

16.2 flowvr-shmdump: Dump Shared Memory Content 124

16.3 flowvr-run-ssh: a Simple Module Launcher . 125

16.4 flowvr-fread and flowvr-fwrite Modules: Save/Replay Messages 126

16.5 flowvr-joypad Module . 126

17 Developping Tools 127
17.1 File Searching in Path . 127

17.1.1 Basic search . 127

17.1.2 Advanced search . 127

17.2 Stream Buffer accessors . 128

17.2.1 std::streambuf . 128

17.2.2 std::stream, std::istream, std::ostream 128

17.2.3 Streambuf Usage examples . 129

17.2.4 streams Usage examples . 129

18 PortUtils – supporting tools for module creation 130
18.1 Motivation . 130

18.2 Integration of custom code with FlowVR . 131

18.2.1 An example problem. 131

18.2.2 Defining module level. 131

18.2.3 Defining network level. 133

18.3 Shortcomings and sources of error . 135

18.4 PortUtils – Overview . 136

18.5 Using PortUtils . 138

18.5.1 Pickung up the example again . 139

18.5.2 Deploying the example . 142

18.5.3 A more complex example . 142

Chapter 13

Flowvr-glgraph: Interactive Graph
Visualization

13.1 Introduction

FlowVR provides an interactive graph visualizer called flowvr-glgraph (see Figure 13.1) to help users
develop and debug their applications. It computes a 2D graphical visualization displaying a graph
of all the components of an application. It can generate graphs based on two types of files: .net.xml
(network-based) and .adl.out.xml (hierarchical).

13.1.1 Network-based .net.xml

Vertices (nodes) correspond to modules, filters or synchronizers. Edges correspond to full connections
(full line) or stamp connections (dashed line). The data is extracted from .net.xml files generated by
flowvr (see section 5.6).

13.1.2 Hierarchical .adl.out.xml

Representation based on composites. A composite can contain other components. All components in
a composite are inside it’s box. Composites have input and output ports, which are located at the top
and the bottom of the box, respectively. This will be further explained later (see section 13.3).
Be careful not to confuse the meaning of edges (arrows going from one component to another) in
network-based graphs and hierarchical graphs. In the hierarchical graphs, edges merely express a
“channel” through which messages can be sent to another component. In such graphs, connections
and stamp connections are separate components.

13.2 Launching

To launch flowvr-glgraph:

flowvr-glgraph [file.net.xml] [file.gltrace.xml]

13.3 Component representation

111

CHAPTER 13. FLOWVR-GLGRAPH: INTERACTIVE GRAPH VISUALIZATION 112

Figure 13.1: The flowvr-glgraph interface, network-based graph.

CHAPTER 13. FLOWVR-GLGRAPH: INTERACTIVE GRAPH VISUALIZATION 113

13.3.1 .net.xml

Vertices (nodes) correspond to modules, filters or synchronizers. Edges correspond to full connections
(full line) or stamps connections (dashed line). Modules are green, filters are blue, synchronizers are
red.

13.3.2 .adl.out.xml

13.3.2.0.1 Composite Each composite component is represented by a “cluster”. Clusters have a
grey outline and a label in the top/middle. The label follows this pattern: “parent/current”. They also
have input ports at the top (green), and output ports at the bottom(light blue). The mini-viewer on the
right shows the cluster outline.

13.3.2.0.2 Composite ports Input ports: green rectangles. Output ports: light blue rectangles.

13.3.2.0.3 Module (primitive module) Modules are purple. They are one block vertically sepa-
rated in 4 sub-blocks. The first block contains the input ports. The second block, the name. The third
block contains the host, plus where that information came from (if available). The fourth and final
block contains the output ports.

13.3.2.0.4 Filter Filters are orange diamonds.

13.3.2.0.5 Connection Connections are blue rectangles with a full black outline.

13.3.2.0.6 Stamp connection Stamp connections are blue rectangles with a dashed outline.

13.4 Shared functionalities

This is what you can do with both formats:

• Load a file, generate a graph

• Move and zoom

• Name, host and XML treeviews

• Snap to component/cluster from treeview

• Search for component/cluster, snap to result in viewport

• Export viewport as an image

13.5 The toolbar

From left to right:

CHAPTER 13. FLOWVR-GLGRAPH: INTERACTIVE GRAPH VISUALIZATION 114

Open a FlowVR XML file.
It goes through a layout computation that could take a few seconds with large graphs.
You can also load a file from command prompt by running flowvr-glgraph
and append the file name as an argument.

Reload the current file.

Export the viewport in a graphical file format.
Available formats are: jpg, png, eps, ps, ppm, bmp and fig.

(.net.xml) If this button is toggled, only the connections between two
different hosts are made visible.

(.net.xml) By toggling this button, you enter in selection mode.

(.net.xml) Decrement visualization depth.

(.net.xml) Increment visualization depth.

(.net.xml) Set visualization depth to the max depth.

(.net.xml) Visualize only the upstream elements.

(.net.xml) Visualize only the downstream elements.

(.net.xml) Visualize both upstream and downstream elements.

(.net.xml) Use one color for one node type (green for modules,
blue for filters, red for synchronizers and gray for routing nodes)

(.net.xml) Use one color for one host.

(.net.xml) Use the colors defined in the file.

(.net.xml) Replace the clicked color by the current color.

(.net.xml) Change the current color.

Open the help dialog.

13.6 The view

CHAPTER 13. FLOWVR-GLGRAPH: INTERACTIVE GRAPH VISUALIZATION 115

13.6.1 Normal Mode

All the graph nodes are visible. Hold left mouse button to move around the graph. A right-click on a
node or a connection magnifies it (.net only).

13.6.2 Selection Mode (.net.xml)

The visualization is depth-limited. i.e. only the nodes not farther from the selected element than the
depth limit will be set visible. A click on a node or a connection will select it.

13.7 The lists

Four trees are filled during loading.
id: nodes id.
host: nodes id, grouped by host.
connections: connections id. (.net only)
XML: the whole xml tree.

13.7.1 Normal Mode

A click on a list element will center the view on it.

13.7.2 Selection Mode (.net.xml)

In the selection mode, the clicked element is centered and selected. If it is a branch, all its leaves will
be selected.

13.8 Searching by Regular Expressions

This text field allows to make advanced research in the nodes id list. The syntax used is fully described
on the QT’s web site: http://doc.trolltech.com/3.3/qregexp.html. The ’Search’
button makes the matching nodes visible and hide the rest. The ’Reset’ button allows to come back to
the normal visualization.

13.9 Clustered Layout (.net.xml)

Use the c key to toogle the clustered layout that improves the layout by taking benefit of the component
hierarchies. This layout is very helpfull, but crashes may occur (layout algorithm not totally stable).

http://doc.trolltech.com/3.3/qregexp.html

Chapter 14

Trace Capture and Visualization

Capturing the trace of an execution and visualize can greatly help to understand the behavior of a
distributed application. For that purpose FlowVR comes with tools to record particular events during
an execution, and to analyze and visualize them off-line.

14.1 Trace Capture and Code Instrumentation

The application should be instrumented (include specific function calls into the code) to record events.
An event corresponds to an id, an occurrence time, and a data. We call a trace the list of events related
to the same id.
There are two kinds of events:

• FlowVR pre-defined events that require no coding effort (just enable/disable the related trace
capture).

• User defined events related to function calls included by the user. This enables the user to
customize event capture according to its needs.

Recording these events takes place through a specific filter called a logger. At least one logger is
required by host that want to record traces. Care has been taken to minimize the overhead related to
event recording (pre-allocation of buffers, reduced number locks). When trace capture is not activated
(logger not loaded), calls to event capture functions is of negligible cost. It is therefore not necessary
to remove these calls from the code.
Each logger as one output port log where it periodically sends the traces it has recorded. For recording
these traces into files, the log port of each logger is connected to a specific metamodule fwrite

14.1.1 FlowVR Defined Events

FlowVR pre-defines traces to capture for each module :

• when the wait starts (the waitBegin trace)

• when the wait ends (the waitEnd trace)

• when the put on the endIt port occurs (the endIt trace)

• when the get on the beginIt port occurs (the beginIt trace)

• when the get occurs for each input port (the trace has the name of the input port)

116

CHAPTER 14. TRACE CAPTURE AND VISUALIZATION 117

• for each output port when the put occurs (the trace has the name of the output port)

The data associated with each of these traces is the current module iteration number.

14.1.2 User Defined Events

There are 2 things to do to enable a module to record a new trace:

• In Flowvrapp, declare that you want to add a user trace (NB that the type of the trace is currently
not used):

mymodule.traces["myTrace"] = int

• Then in your source code, declare a new vector of trace object, and pass it to the method init-
Module() (as the optional second argument). Each trace has a name, and declare the type of the
data to be recorded (use a c++ template):

//create a vector of Traces:
std::vector <flowvr::Trace*> myPersonnalTraces;
...
//declare your Traces
TypedTrace<DataTypeforTrace> myTrace("myTrace");
...
//add them to the vector.
myPersonnalTraces.push_back(myTrace);
...
//and finally pass this vector to the initModule Method (which registers

and initializes the module to the FlowVR daemon)
if (!(pFlowVRModule = flowvr::initModule(ports, myPersonnalTraces)))
{
return -1;
}

• Now you can call the function ’write’ to record an event:

myTrace.write(data);

In share/flowvr/examples/primes, the visu module declares a user trace that emits an event each time a
message from the capture module is not of size zero, which means the user is pressing one or several
keys (the number of keys simultaneously pressed is taken as the message data, of type int). The user
trace is defined and used as below (see share/flowvr/examples/primes/modules/src/visu.cpp) :
For advanced users, refer to the flowvr-base/include/trace.h file that defines the API for the FlowVR
traces.

14.1.3 Traces for Filters and Synchronizers

Recording Traces within Filters and Synchronizers is similar to recording traces within modules.
By default each filter and each synchronizer declare a trace for each of its ports. These traces are
automatically included in the application network when generated.
User defined events related to function calls can also be included in filters and synchronizers for spe-
cific needs.
The procedure is similar to adding User defined traces to a module.

• as for module, the trace should be declared in Flowvrapp

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/primes/modules/src/visu.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-base/include/trace.h

CHAPTER 14. TRACE CAPTURE AND VISUALIZATION 118

• Then in the source code of your filter, the trace should simply be added to the trace vector
outputTraces (which is already declared in object base class).

//declare your Traces
TypedTrace<DataTypeforTrace> myTrace("myTrace");
...
//add them to the vector.
outputTraces.push_back(myTrace);
...

• finally, the calling of the write method is similar to the earlier one.

Filter base class declares 2 custom traces iddleBegin and iddleEnd, that are for instance called in
filter Merge. Refer to flowvrd/src/plugins/filters/flowvr.plugins.Merge.cpp and flowvrd/src/plugin-
s/sys/flowvr.plugins.Filter.cpp

14.1.4 Launching Trace Capture

14.1.4.1 Generating the network

Tracing an application implies to add Loggers(plugin) and FWrite modules, to write events informa-
tions in a file, and to generate specific files. This is done in Flowvrapp with

import traces
traces.add_traces(traces.select_primitives(), ’appName’)

The traces.select_primitives() selects the primitives to trace. By default, all the primitives
declared so far are traced.
The appName argument sets the prefix for sevral files:

• First, two files are created, containing commands to start and stop logging events : [app-
Name].prolog.xml (for start commands) and [appName].epilog.xml (for stop commands).

• Then, a result file is created for each host to log. By default, those files are written in
/tmp/trace_log_[hostname]. You can override the files’ prefix using an argument to
add_traces.

• We advise to set a NFS directory on your cluster, to ease trace visualization. Indeed, the ’flowvr-
gltrace’ utility needs to access to all of those files to construct the trace graph. Else, you’ll have
to gather them in a local directory to be able to launch trace visualization.

• finally, a description file is generated : [appName].gltrace.xml that stores information about the
events traced (name, color, links...)

14.1.4.2 Command Details

Once you have launched your application, flowvr accepts commands trace / notrace in the telnet
console, to respectivly start/stop tracing the application. Events are logged between this two calls.

...
Processing STDIN...
>trace

wait the time you need, then :

>notrace

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/src/plugins/filters/flowvr.plugins.Merge.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/src/plugins/sys/flowvr.plugins.Filter.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/src/plugins/sys/flowvr.plugins.Filter.cpp

CHAPTER 14. TRACE CAPTURE AND VISUALIZATION 119

14.2 Trace Visualization

FlowVR comes with the flowvr-gltrace tool to analyze and visualize traces.
Visualizing a trace can be as simple as:

flowvr-gltrace [your_app].gltrace.xml

Figure 14.1: Visualization of a trace generated from the Primes example. Modules alternate between
red (waiting) to green (computing). We can see for instance that the visualization module is activated
once it gets a message from the compute module and from the capture (indirectly through the
patternsync/filter as we are using a greedy pattern here.)

14.2.1 User Interface commands

To navigate through the trace the following functions are available:

• key q or Q : quit flowvr-gltrace

• key + and - or mouse sroll : horizontal zoom in and out the trace

• key ctrl + mouse scroll : vertical zoom in and out the trace

• Left mouse click: grab the image and scroll it on the left or on the right

• key ctrl + Left mouse click : grab the image and scroll the image vertically

• Right mouse click: draw an isochronous line

• key 4 and 6 : decrease/increase the speed of automatic scrolling (start at 0)

• key 3 and 9 : decrease/increase the ratio of speed increase/decrease

• key 5 : stop automatic scrolling

CHAPTER 14. TRACE CAPTURE AND VISUALIZATION 120

14.2.2 Graphical Representation description

Events are ordered on an horizontal time line.
Each line corresponds to a different object (module, filter, synchronizer). The name of this object is
displayed on the left of each line. Objects are differentiated by the color and the size of the line.

• Modules are represented by thick lines, being either green or red :

– when waitBegin event occurs the line turns red (an inactive period starts);

– when waitEnd event occurs the line turns green (an active period starts).

• Filters are represented by thin lines, being either orange or blue :

– when iddleBegin event occurs the line turns blue (an iddle period starts - only for specific
filter such as merge or signalAnd, that are waiting for several messages on their input ports)

– when iddleEnd event occurs the line turns orange

• Synchronizers are represented by thin pink lines

Each time an event occurs (put, get, or any other event) a short colored vertical line is displayed on the
line where it took place:

• beginIt: white line

• endIt: blue line

• order: purple line (for filters/synchronizer)

• put or get on other ports: yellow line

• user defined events : yellow line

Message transmissions are displayed as lines going from one horizontal line to the other

• full message : line going from red (message emission) to blue (message reception)

• stamp message : line going from green (message emission) to pink (message reception)

14.2.3 Customizing Graphical Representation

The graphical representation can be customized by editing and modifying the .gltrace.xml file.
The main sections for customization are:

1. <objectlist>: the objects (modules, filters, synchronizers)

2. <eventlist>: the events traced

3. <linklist>: the links between events that flowvr-gltrace can compute (for instance a
message transmission between objects)

In each of these section you have the possibility to enable/disable a display (attribute active) for
some data, to change the text displayed (attribute text) or a color (attribute color).
One can also customize the way the .gltrace.xml description file is generated. Refer to flowvr-
app/src/applicationTracer.cpp and flowvr/include/flowvr/app/core/applicationTracer.h

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-app/src/applicationTracer.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-app/src/applicationTracer.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr/include/flowvr/app/core/applicationTracer.h

CHAPTER 14. TRACE CAPTURE AND VISUALIZATION 121

14.2.4 Visualization in flowvr-glgraph

Traces can also be visualized in flowvr-glgraph, when the .gltrace.xml is passed as the sec-
ond argument. The flowvr-glgraph has a current time, and a slider can be used to set it.
Currently active modules (not waiting) are displayed in bold, and messages are shown as red dots ont
the links. The traces can be replayed in real time with the “play” button. The “play events” button does
the same, but slows down the events as much as necessary so that all messages are visible (Fig 14.2).

Figure 14.2: Visualization of a trace generated from one of the filter examples. Messages are shown
in red.

Chapter 15

FlowVR Template Library

Related files

• urlflowvrinclude/ftl/: contain all ftl header files.

15.1 Overview

The FlowVR Template Library provides some generic representations for frequently used objects:
vectors, matrices, quaternions, etc. as well as a utility tool to parse the command line arguments.

15.2 Vectors

#include <ftl/mat.h>

flowvr-ftl/include/ftl/vec.h
The class Vec<N, Type> represents fixed-size vectors of N elements of type Type. Elements are
stored in a compact contiguous manner: a FTL vector can thus be casted from a standard C array.
Standard mathematic operations are available directly by redifinition of the corresponding operators.
Different predefined vector types are available as aliases: VecNT where N is 2, 3 or 4 and T is b
(unsigned char), i (int), f (float), d(double).

15.3 Matrices

#include <ftl/mat.h>

The class Mat<L, C, Type> represents fixed-size matrices with L lines and C columns, each ele-
ment being of type Type. Elements are stored in a single buffer in line order. Standard mathematic
operations are available through redefined operators.

15.4 Quaternions

#include <ftl/quat.h>

The class Quat represents a quaternion. It can be constructed from different rotation representation
and can be converted to and from rotation matrices.

122

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvr-ftl/include/ftl/vec.h

CHAPTER 15. FLOWVR TEMPLATE LIBRARY 123

15.5 Command Line Parsing

#include <ftl/cmdline.h>

To ease the parsing of command line options (a very frequent task for modules), FlowVR proposes an
easy command line parsing API.

15.5.1 Declaring Options

Declaring an option simply consists in creating a variable of type:

• Option<Type> for an option with an argument (potentially optional) of type Type.

• FlagOption for an option with no additional argument (a flag).

The option’s short name (a letter) indicates which short command (’-’ followed by this letter) triggers
the option. The option can also be triggered with a long command (’–’ followed by the long name) if a
non NULL long name is given. The description corresponds to the help given by the help option (’-h’,
’–help’).

15.5.2 Parsing the Command Line

Parsing the command line first requires the creation of an object of type CmdLine. The description
then given corresponds to the usage line given by the help option. Parsing the option is then done by
calling the fonction parse.

15.5.3 Retrieving Values

Testing if an option is present is simply done by testing if its count attribute is non nul. An option is
automatically casted into its value (a boolean for a flag).

Chapter 16

Other Tools

16.1 flowvr-graph: static network images

To generate graphical representations of FlowVR networks flowvr-graph uses two external tools:
xsltproc (a XSLT parser) and dot (Graphviz).
xsltproc is the XSLT parser associated with libxslt. On Debian it can be installed using apt-get
install libxslt1-dev

dot is a graph layout tool from the Graphviz package available at http://www.graphviz.org/.
On Debian you can use apt-get install graphviz to install it.
Once these tools are installed you can use the provided script flowvr-graph. It takes as input the
.net.xml file. If no argument is given it will print a .dot graph description. This graph can be
customized and then displayed using dot. You can also directly specify arguments to flowvr-graph
which will invoke dot using these arguments.
For example to compute the image of the Primes application:

cd share/flowvr/examples/fluid
Compile the application
make-app.sh
Process he application:
flowvr Fluid
and this command will create a graphical representation
flowvr-graph -Tps -o ./primes.net.ps < ./primes.net.xml

You can generate different types of files (PS, PNG, FIG) using the -T argument. You can also pass
some graph attributes using -G (such as -Grankdir=LR to have an horizontal layout.
If you have chosen to install it, you can also use the graph visualizer flowvr-glgraph (see chapter 13).

16.2 flowvr-shmdump: Dump Shared Memory Content

flowvr-shmdump is a useful utility to know the state of the shared memory created by a FlowVR
daemon. It takes two arguments : the SHM ID (0 by defaults), to specify which shared memory area
to explore if several FlowVR daemon are launched on the node ; and a position given in hexadecimal,
to have a look on the data stored at this position.
There is the result of the command flowvr-shmdump, when there is just the daemon launched and
no application.

flowvr-shmdump 0
FlowVR Shared Memory Dump version CVS

124

http://www.graphviz.org/

CHAPTER 16. OTHER TOOLS 125

Opened shared memory area with ID=51337: internal id=3014667 size=10000000
attached 1 time(s)

Mapped shared memory area with ID=51337 at 0x402a0000
Shared memory area mapped at 0x402a0000
Daemon header at 0x40
Head bloc at 0x1e0
Buffer pos=0x1f0 length=0x18 nbref=1
Buffer pos=0x208 length=0x10 nbref=1

Bloc pos=0x218 length=0x989468 prevDP=-0x38 nextDP=0x989468
Free memory 9999456, found 9999456 (99%)

This utility can be very useful for debugging some memory lack or to find a better size for the shared
memory area.

16.3 flowvr-run-ssh: a Simple Module Launcher

A VOIR may be move it to a upper section as it became a central tool for flowvr FIN
flowvr-run-ssh (bin/flowvr-run-ssh) is a useful tool for launching FlowVR modules through ssh.
It alleviates the difficulty of handling environnment variables with ssh and automatically propagates
the FlowVR variables (FLOWVR_DAEMON, FLOWVR_PARENT, FLOWVR_MODNAME).
flowvr-run-ssh is intentionally kept simple. If it does not fit your needs look at more advanced
launchers like TakTuk or mpirun.
The MetaModuleFlowvrRunSSHmetamodule class (include/flowvr/app/components/metamoduleflowvr-
run-ssh.comp.h) eases the use of flowvr-run-ssh. You just need to provide the executable name of
you module and customize some options if required (include/flowvr/app/core/run.h). You will be able
to start several instances of your module on distant machines.

flowvr-run-ssh [-v] [-d path] [-m] [-l login] [-e VAR VALUE] [-x VAR] [-s]
[-p] hostlist command

• -x VAR : propagates the variable VAR through ssh.

• -e VAR VALUE : sets the variable VAR to VALUE.

• -s : sequential mode (does not set FLOWVR_RANK nor FLOWVR_NBPROC). This is the
default behaviour if only one host is used.

• -p : parallel mode (sets FLOWVR_RANK and FLOWVR_NBPROC). This is the default be-
haviour if several hosts ares used.

• -l login : runs ssh with a different login.

• -path path : path is changed to path before launching command. By default the program
is launched from the Home directory of the user.

• -v : Verbose mode.

• -m : multi-platform mode. All occurences in the path of the value contained in $PLATFORM
will be set to the correspondant value of PLATFORM on the distant host.

flowvr-run-ssh needs a valid bash account with flowvr environment variables set at login.

http://taktuk.gforge.inria.fr/
http://www.open-mpi.org
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/app/components/metamoduleflowvr-run-ssh.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/app/components/metamoduleflowvr-run-ssh.comp.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/app/core/run.h

CHAPTER 16. OTHER TOOLS 126

16.4 flowvr-fread and flowvr-fwrite Modules: Save/Replay Messages

A VOIR a reviser: par antoine FIN
FlowVR provides modules for writing messages to a file and for reading them.

• flowvr-fwrite: writes all messages on its input port to a file.

• flowvr-fread: reads messages from a message and sends them on its output port.

16.5 flowvr-joypad Module

A VOIR a reviser: par antoine FIN
FlowVR also provides a module for retrieving events from a joypad. It opens two ports per button and
axes: one for the event itself and one for the accumulated value on this axe (or state of the button).
Note that the desc files should be modified according to your device for the number of buttons and
axes.

Chapter 17

Developping Tools

17.1 File Searching in Path

Related files

• include/flowvr/utils/filepath.h

A very frequent task performed by FlowVR programs and modules is to search for a file given a set
of directory locations. The class FilePath implements this functionnality. A path is considered as
a string composed of directory locations separated by ’:’ (as for the standard environment variable
$PATH). Files are searched as the concatenation of the filename given and one of the directory
location of the path. This class can be used in two different ways.

17.1.1 Basic search

bool FilePath::findFileIn(std::string& filename, const std::string& path);

This static function looks for file filename in the path given by the parameter path. If the file is
found with one of the directory location, the function returns true and sets filename to the correct
path for the file (mainly the concatenation of this directory and the file name). Otherwise it returns
false.
This function simply tests the concatenation of each directory location (in the order of the path) and
the filename. It does not test in the current directory and does not take a special care for files starting
by ’/’, ’./’ or ’../’

17.1.2 Advanced search

To handle those cases correctly, we need to first build an object FilePath with the different paths to
search before searching for the file.

17.1.2.1 Construction of a FilePath

FilePath::FilePath(const char *envVar = "FLOWVR_DATA_PATH");

This function builds a FilePath object by loading its path from an environment variable envVar. If
no parameter is passed the variable FLOWVR_DATA_PATH is then used. For not loading the path from
an environment variable, one must set envVar to NULL.

127

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/utils/filepath.h

CHAPTER 17. DEVELOPPING TOOLS 128

17.1.2.2 Addition of a Path

void FilePath::addPath(const std::string& path);

Adds a path for the search.

17.1.2.3 File Search

bool FilePath::findFile(std::string& filename);

File filename is searched as follows:

1. Using the specified file name in current directory.

2. In the directory path specified using addPath method (in reverse order: last added first searched).

3. In the directory path specified using an environment variable.

For file name starting with ’/’, ’./’ or ’../’ only the first step is applied. The results of the search
is identical to the basic file search method.

17.2 Stream Buffer accessors

Related files

• include/flowvr/utils/streambuf.h

• include/flowvr/utils/iostream.h

As it is, it may be tedious to access a buffer to write/read any data structure which is more complex
than a mere array. Indeed, doing so involve some type-casting while keeping track of the offset used
to write the next piece of data, both prone to careless mistakes. However, a few helper classes are
supplied to help the user perform such accesses.

17.2.1 std::streambuf

This is the lowest-level of those helper classes. This abstract class of the C++ STL (Standard Template
Library) gives a manner of accessing data coming from/to some controlled input/output sequence. It
care care of both the buffering and the actual data accessing.
Thus the flowvr::utils::streambuf class implements std::streambuf to help accesssing a
flowvr::Buffer however it’s segmented, and with no redundant buffering. It enables to do so with
a shorter code while reducing the risk of careless mistakes.

17.2.2 std::stream, std::istream, std::ostream

Atop of that, you can directly use the streams from the STL to make profit of their error handling and
the overloaded extraction operators.
To avoid having to create the streambuf yourself, you can use the flowvr::utils::bufferstream,
flowvr::utils::ibufferstream and flowvr::utils::obufferstream classes that inherit
the standard streams in the fashion of std::filestream and std::stringstream.
Keep in mind that those streams serialize the data in ASCII text instead of simply copying memory.

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/utils/streambuf.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/utils/iostream.h

CHAPTER 17. DEVELOPPING TOOLS 129

17.2.3 Streambuf Usage examples

Streams from the STL serialize the data in ASCII, but using streambuf directly, you can also copy
binary data.

flowvr::utils::streambuf inb(message.data); // wrap an incoming data
std::ofstream out("/tmp/some_file"); // open some output file
out << & inb; // dump all data

std::ifstream in("/tmp/some_file"); // open some input file
size_t size = in.rdbuf()->pubseekoff(0, in.end); // get size
in.rdbuf()->pubseekpos(0); // back to the begining
flowvr::BufferWrite data = module->alloc(size); // pre-alloc output buffer
flowvr::utils::streambuf outb(data); // wrap output buffer
in >> & outb; // dump all data
flowvr::BufferWrite full, part;
full = outb.gBufferWrite(); // ’get-buffer’, full internal buffer
part = outb.pBufferWrite(); // ’put-buffer’, written bytes only

17.2.4 streams Usage examples

// per-alloc reasonnable amount of memory. Can be insufficient
flowvr::BufferWrite data = module->alloc(size);
flowvr::utils::obufferstream out(data);
out << some_int << ’\n’;
out << some_float << ’\n’;
out << some_object << ’\n’;
out << some_other_object;
// some allocation may have been necessary, get modified buffer
data = out.rdbuf()->pBufferWrite();

flowvr::utils::ibufferstream in(message.data);
in >> some_int;
in >> some_float;
in >> some_object;
in >> some_other_object;

Chapter 18

PortUtils – supporting tools for module
creation

A VOIR outdated, has to be brought up to work with flowvr-appy FIN
This part describes an extension to Flowvrapp and the module code on top of FlowVR itself, called
’PortUtils’. It is part of the FlowVR library and may be used in conjunction with existing code. There
is no ’binary’ decision of whether to use PortUtils or not, but rather a new set of tools that you can use
to address specific issues when creating applications with FlowVR.
Throughout the document, it is assumed that the user has good understanding of FlowVR, Flowvrapp
and is thinking in a modular way, maybe even a bit object oriented. We will not spend too much time
to explain C++ or template tricks or how dynamic library loading works. As well, there will be no
discussion of cmake or make files and linker problems. So all this should be familiar, too.

18.1 Motivation

Writing a FlowVR application consists of a many-stage assembly procedure where the authors of an
application already have some module or write new module code to define the final functionality. The
semantics of the application are defined by the flow of data between the modules. These elements
consist of connected filters, synchronizers or and a set of modules. One of the main goals of FlowVR
is to keep the portion of code that has to be written to integrate already existing code into the mid-
dleware quite minimal. Typically, input- and output-ports have to be defined, and they have to be
given to a module interface that thereafter is able to run the module update loop using the wait() (for
message), get() (a message) and put (a message) cycle. From a module point of view, that is about
it. Programmers have the freedom to choose more on the internal structure of the module binary, for
example if there is more than one named module in the same binary or not, or whether the binary is a
multi-threaded application itself. Whatever the specific choices here are, for FlowVR there is only the
module interface and its ports that are given by the binary after launching it.
The network of modules, filters and synchronizers is created using the Flowvrapp layer. In this layer,
programmers produce and use a set of C++ objects where each one can create a sub-graph of modules
that is connected to other sub-graphs of the application network. For the scope discussed here, it is not
interesting to reason about the network itself, but more on the interface to integrate a given module.
For that, we start by discussing the ’standard’ way of integrating a module first. After that, we will
discuss some of the shortcomings of the approach, and where errors can occur. The PortUtils try to
tackle these shortcomings, so we give an outline of the possibilities that arise when using PortUtils at
the end of this section.

130

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 131

producer consumer

data eatdata
end

begin

Figure 18.1: Conceptual network for the simple example.

18.2 Integration of custom code with FlowVR

This section will, very briefly, discuss the steps that have to be taken to integrate custom code into
FlowVR by defining a module. It will not discuss what to do if you want to filter anything (see FlowVR
documentation for that). We will use a very small example that might not be the standard use case when
thinking about using FlowVR, as it is written for larger contexts.

18.2.1 An example problem.

For our discussion, we will use a simple producer–consumer problem. A number of modules will
produce some data in parallel, the data will be transmitted to a number of consumers where it is used.
For the sake of simplicity, we assume that the data is processed in a push-pipeline that is running at
the speed of the consumer. In this discussion, we will limit the number of producers and consumers to
1, resulting in a 1:1 pipeline1. So the resulting conceptual network (see Figure 18.1) is simple.

18.2.2 Defining module level.

We will take care of the definition of this graph later, first we go and define discuss the module struc-
ture: we have two modules here, and we call them P(roducer) and C(onsumer). Before we dive into
the code let us think a bit about the relation of the two.
The producer has 1 output port while the consumer has 1 input port2. P creates a blob of memory with
an internal structure not important to FlowVR (it is just the size that counts), and C has to know that
internal structure well in order to process on it3. The modules itself define names they give to the ports
as well as a direction (in or out), and this information will be passed to the FlowVR-daemon upon a
call to flowvr::initModule().
The code of P looks probably a bit like this4.

OutputPort p("data");
vector<Port*> v;
v.push_back(&p);
[...]
module = initModule(v);
// initialize the internal state machine here...
[...]
// now the flowvr-loop
while(module->wait())
{

1Accustomed readers might see the relation to the TicTac example shipped with FlowVR.
2Let’s not forget, but not discuss, that both have beginIt and endIt given by the system.
3There might be cases, where a module is only interested in the ’outer shape’ of a message that is defined by FlowVR,

e.g. its size and so on. But typically, this is an aspect that is more often covered by a filter, so we omit that case here.
4For the sake of simplicity, we omit namespace qualifiers and other syntactic burdens needed to compile the code.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 132

// call inner state: produce
Data date = produce();
size_t n;
char *pdate = serialize(date, n); // make it a memory blob

// write length to n
// wrap the produced blob into a message
MessageWrite mw;
// create new blob of data with size n
mw.data = flowvr->alloc(n);
memcpy(m.data.writeAccess(), pdate, n); // copy to message
// now put
module->put(&p, m);

} // while

There are some things to note on this example already here.

• the name of the port (’data’) is ’hard-coded’ as a string into the binary.

• the ports are given in a vector of ports to FlowVR, so they have to be explicitly added to that
vector after creation.

• the data object produced has either to have a serial structure or has to be serialized explicitly5.

• the port to use has to be known by pointer in the call to put().

• the order of calls to put() is coded into the while loop.

• the code for creating a message is always the same: get a container, re-size the container, fill the
container, put it to FlowVR and forget it.

The code of C looks similar in a way.

InputPort p("eatdata");
vector<Port*> v;
v.push_back(&p);
[...]
module = initModule(v);
// initialize internal state machine
[...]
while(module->wait())
{

// get a container
Message m;
// fill it
module->get(&p, m);
// consume...
Data date = deserialize(m.data.readAccess(), m.data.getSize());
consume(date);

}
[...]

Again there are things to note.
5For this document, we use the term serializing, which sometimes is named marshalling or has other names. Simply

spoken: serialization produces a flat representation (e.g. a string) from a possible graph-like representation (e.g., an object
graph).

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 133

• the name of the input port is again ’hardcoded’ into the binary. It even differs in name from the
one defined at the producer. That is by design of the data flow paradigm not a problem, as the
name is only important for routing of the data.

• again we have to pass the ports to the module initializer by a vector of ports.

• for getting data, we have to know which port to query6.

• the message has to be decoded from the message’s flat structure into something meaningful to
the inner state of the module (e.g., de-serialize the data).

The two codes need to be compiled into a binary. For this example, we decide to use the two modules
in two different binaries, called producer and consumer. We have to create the make files for these
files and deploy all libraries needed for linking and execution.
As an additional note here: we assume that producer and consumer can work without any externally
given parameter. Normally these are given by command line options to change the behaviour of a
module dynamically. This will be discussed later in the context of PortUtils again.

18.2.3 Defining network level.

The simple application graph was already shown (see Figure 18.1). After the module code is written,
the connection between the module from P.data to C.eatdata needs to be defined on the level of
Flowvrapp7.
In Flowvrapp, we have to define an interface wrapper for the module that defines the ports and the
inner, logical, sub-graph of the component. So we need two classes that inherit from Module and that
define the ports in their constructor.

class ModuleProducer : public Module
{
public:

ModuleProducer(const std::string &id_)
: Module(id_)
{

addPort("data", OUTPUT, FULL);
}

};
class ModuleConsumer : public Module
{
public:

ModuleConsumer(const std::string &id_)
: Module(id_)
{

addPort("eatdata", INPUT, FULL, "", Port::ST_BLOCKING);
}

};

There are again some points to note here.

• as we wrap the final module, the port names and directions and state have to match exactly the
definition that is given in the module code.

• we have to rightfully chose the type of the ports.
6In this example, this is clear: there is only one port, but we still need the pointer to that port.
7In the following, most of the interfaces used are in the namespace flowvr::app, which we will omit in the text.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 134

• typically this stage can be used to forward user given parameters from the parameter-file to the
command line of the launcher. For the given example, we do not need any parameters, so the
code is as plain as above.

These modules have to be associated by a launcher, or in the definition of Flowvrapp, have to be
wrapped by a metamodule instance. As we have no specific need for the MPI launcher, we use the
FlowVR ssh launcher to start the binaries for us.

class MetaModuleProducer
: public MetaModuleFlowvrRunSSH<ModuleProducer>
{
public:

MetaModuleProducer(const string &id_)
: MetaModuleFlowvrRunSSH<ModuleProducer>(id_, CmdLine("producer")) {}

};
class MetaModuleConsumer
: public MetaModuleFlowvrRunSSH<ModuleConsumer>
{
public:

MetaModuleProducer(const string &id_)
: MetaModuleFlowvrRunSSH<ModuleConsumer>(id_, CmdLine("consumer")) {}

};

Again some things to note here.

• the launcher itself does only define the specific requirements on the launching process, for ex-
ample command line parameters to the launcher to forward the display.

• the name of the binary to launch has to be given as a parameter to the CmdLine object, e.g., the
ssh wrapper.

• by inheritance, the launcher will act as proxy to the module, as it forwards all ports defined by
the module as-is.

At this stage, we come to a total of 4 classes for two modules: 1 for producer, 1 for consumer, and
two launchers, as we have two different binaries to launch.
The resulting connection between the two still has to be defined in a separate class8.

void ProducerConsumer::execute()
{

MetaModuleProducer *p = addObject<MetaModuleProducer>("producer");
MetaModuleConsumer *c = addObject<MetaModuleConsumer>("consumer");
link(p->getPort("data"), c->getPort("eatdata"));

FilterPreSignal *ps = addObject<FilterPreSignal>("ps");
link(c->getPort("endIt"), ps->getPort("in"));
link(ps->getPort("out"), p->getPort("beginIt"));

}

The things to note here are as follows.

• we connect the metamodules instead of the modules.

• we link the modules directly by the port names given in the code above.
8In this case, this is even the resulting application, but in the general case, this is just some subgraph of the final network.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 135

• as we want to drive the application by the frequency of the consumer, we introduce a special
cycle breaking filter here, though this is not important for the overall example.

Finally we arrive, after having defined 5 classes in Flowvrapp to create and launch the network as a
FlowVR application. The application can now be launched by a call to flowvr in the command line,
with all paths been set.

18.3 Shortcomings and sources of error

First, we will describe the most common errors that can happen on module level.

• forget to add a port to the vector of ports that is passed to initModule().

• we give a name twice (input and output ports share the same namespace, so it is illegal to have
a name for a port multiple times).

That is not overwhelmingly much, but these errors can be tedious to find when the applications get
bigger. Especially the first point can become really annoying, for example when in the process of
re-working the module code and adding new ports.
The internal structure of a module tends to show large bodies of the module->wait() while loop.
Typically there is a larger state machine which become unreadable very quickly. If there is more
than one port used for input and output passing, each port-polling results in more code and introduces
more constraints on the order of putting and getting messages. More sophisticated integrations of the
FlowVR API into custom modules is typically done for this module only and resulting code base is
hard to compare to other approaches.
For the level of Flowvrapp, there is more errors that can occur.

• mis-spelling of a port name for the module declaration.

• mis-typing the ports during module declaration. For modules port types can only be FULL.
But on Flowvrapp level, we can mark module ports as STAMPS without error, but the resulting
network will not function properly.

• mis-spelling of the binary name of the application.

• mis-spelling port-names on the level of the Composite that defines the application9.

• giving a wrong parameter set to the launcher (but that is beyond scope of this document to
discuss that).

While all the errors depicted above are quick to solve, they are hard to find when the Composite code
becomes big or there are more than two or three element in the resulting network.
General shortcomings of the approach are obvious. For even a very simple problem, we create a
number of new classes and their instances can be regarded as ’parametric objects’, that is they define
mostly the strings to be passed and used for searching, while the code is generally quite comparable.
For each new class, probably new include and linker paths have to be defined for the projects that want
to use them. This makes building and deployment of the application more complicated. The relation
between metamodules and modules may not be quite clear to beginners and it can confuse when to
give which type to which other layer of Flowvrapp.

9that is: we mis-spell the name in a call to getPortname.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 136

18.4 PortUtils – Overview

The idea of PortUtils was to create an API that implements a more sophisticated approach to module
definition in the first hand. By that, we wanted to have more maintainable code and modules that can
be better compared and exchanged. Another aspect was to reduce the number of error sources when
integrating a module into the FlowVR network when using Flowvrapp.
With respect to the example given (see section 18.2), we learned the following.

• module writers have to create the main-loop and co-responding make structures for each module
again and again.

• some arrangements we might want to have for modules have to be implemented by the one
who creates the module code. For example the reaction of the module upon an internal error
(stack-trace print) or the graceful exit and cleanup has to be reprogrammed every time.

• port names are used as strings throughout several levels, and they are typically hard-coded.

• maintaining ports and using them is easy, but error prone.

• reading and submitting messages to a port is a repetitive process that should be abstracted. In
the end, we are interested in getting messages in and out, but usually do not care how this is
done (means: the port itself is no longer an important structure to maintain).

• the current API does not give any hint on how to structure the module better. As such, there will
be lots of big while loops. The module code tends to be hard to maintain and extend.

• there is no hint on how to support the re-use of serialization code for messages. This is a
rather important aspect, as the data that flows through the network has to be interpreted by
many modules, so a factorized serialization code simplifies application development and helps
to maintain things.

• there is no direct support to factorize the code that works on specific types of messages. This,
again, is an important aspect, for when we replicate functionality in the data flow network, we
might not always use the full module code for that, but just a portion. As the module code
determines when and how the ports are read and that there have to be other connections, that
code is hard to factorize.

• even the thin-waved structure of FlowVR already leads to complex state machines and ofter
hinders that code can be re-used in other contexts, for example when FlowVR types are passed
throughout the system to finally deploy the data to the data-flow network. It would be more
interesting to be able to separate code needed to set-up 3rd party code from the receiving and
dispatching code working on the data.

• for long-lasting applications, often we have to do upgrades of 3rd party libraries. In that case we
would like the work imposed by the updgrades to be minimal, only affecting small portions of
our module code.

• with respect to the network, the flow of information is the same, while module code can change
drastically. For example when a user decides to switch an underlying API. Having FlowVR code
intertwined with module code, this typically leads to a total re-write of the module code.

• the Flowvrapp code introduces a lot of intermediate classes that are or ’parametric’ type. The
only really interesting class is the one that defines the connectivity of the sub-graph. The relation
between the classes may not be too clear to users at first sight.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 137

flowvr

fvr-portbinary XML

3rd party code

services plug-ins
[depends]

portfile

names

names

argtree

parameter-space

.so .so

portfile

Figure 18.2: Physical structure of a PortUtils assembly.

Some of the points above can be approached by the usage of scripts that create skeletons for the code
to write. This simplifies the first steps in the project but is totally useless when the code evolves and
new requirements have to be introduced.
We will present the features of PortUtils in a more structured way now. The basic ideas of PortUtils in
a nutshell are as follows.

• PortUtils maintained modules can be used along with already existing, normal flowvr and
Flowvrapp elements. It builds completely on top of the existing API.

• for the modules: port-names, their ’semantics’ and the relation to 3rd party code is described in
a module-extern resource, currently an XML file.

• the ’semantics’ of a module is defined by ports, their relation to ’handlers’ and ’services’ and an
order of execution. User code focuses on defining ’handlers’ and providing them as plugins to
the PortUtils aware binary module.

• there is (normally) just one binary that is launched as a module and that takes care of setting
up the module code according to the structure defined. This binary also defines some com-
mon mechanisms we want to support on system level, for example error handling and better
debugging. It also tries to support the common ’tricks’ that flowvr programmers do on the API,
like ’pre-wait messages’, ’more-than-one-message per loop’ and ’one-shot’ messages as well as
’no-port execution of code’.

• the external (XML) resource is used in Flowvrapp to create instances of parametric classes that
reflect the defined structure. By that, it is no longer necessary to create the intermediate classes
(module / launcher) manually, but instead focus more on the application graph.

• PortUtils unifies the way that parameters are defined and passed between Flowvrapp and the
module10.

This results in a special physical structure of a PortUtils assembly (see Figure 18.2).
10Up to now we did not cover parameter passing, this is done below.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 138

All the above benefits come with a price. Dynamic module interfaces are not well supported, as the
interface structure is defined by a static resource (the XML file). Of course between different runs one
can modify the file, but there is less possibility to change the module’s signature during run-time11.
Another aspect is that deployment of the application gets more complicated. While the old approach
needed to have just the execution path to be set-up correctly to find the binary, we now have to declare
where to find the interface descriptors and extend the dynamic loader’s run-time-search path to find
plugin structures.
The structure of the code is now more fragmented, as it resides in separated plugin structures, and
there is not a single main that can be inspected with a debugger12.
The parameter passing is more complicated, as a parameter tree is passed in an encoded form to the
application, so manually launching of modules is more complicated13.
Finally said, there are just two locations now where strings are formulated that build the glue between
the run-time components: on the level of the XML file descriptor and for the composite in Flowvrapp
that still has to be formulated knowing the strings defined for the module. As the strings can change
between iterations in the XML file, the co-responding Flowvrapp component has to be adapted to the
changes. Even worse, we can pass the name of the interface descriptor to the Flowvrapp component
by parameter and totally changing the signature of the module, causing a Flowvrapp component to
fail during execution14. In that sense, the Flowvrapp component now defines the constraints that the
interface descriptor has to obey. This dependency already exists in the normal approach of Flowvrapp,
but it was by a three level compile time dependency (in the module, the Flowvrapp primitive descrip-
tion and the Flowvrapp composite description). Compared to a one-time compile time dependency
(Flowvrapp composite description), this is already some kind of progress.

18.5 Using PortUtils

The following section will describe a user-level point of view on PortUtils by describing how to use
the library. It will on purpose not explain some automagic facilities of PortUtils, but more focus on an
example and an outline of the deployment structure.
From now on, we call the ’external XML interface descriptor’ simply a portfile. The part of a module
that actually performs a decoding of messages, or the encoding of new messages is called a handler.
Handler code is defined by plugins and 3rd party code can be represented by services and it executed
in a code path. The relation between the plugins and the services is strongly coupled from plugin to
service, but there is not coupling from service to plugin structure15. Ports simply stay ports as they are
defined by flowvr.
A module is now defined by reading a portfile that describes the ports to allocate, including their name
and direction and flags. It will find there a definition of the code paths to execute, and each code path
is bound to a plugin. Each plugin consists of a shared object that may be bound to exactly one service.
Each service itself is a shared object, too.
There is already one executable shipped with flowvr, called flowvr-portbinary that does the bulk
work, so the user does not have to worry about setting up the details and passing arguments and
parameters.

11There is, however, a mechnism to dynamically duplicate existing ports, using the multiplicity attribute of a port
declaration.

12Note that we do consider that actually a benefit, as we can focus on smaller code fragments for debugging. However,
there are situations, especially in a service to plugin communication that might now be harder to overlook.

13There is, however, better tool-support for creating the encoded tree and parameter files.
14For the current version of Flowvrapp (1.8) this is the case, we hope to come up with a clever way of avoiding this in the

future.
15At least there should be not coupling in that direction. It will lead to trouble.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 139

18.5.1 Pickung up the example again

Let’s see how to re-create the above given example with PortUtils. First of all, we care about the
modules, we have two, called producer and consumer. We have to define two portfiles now, we can
give them any name, but for the sake of simplicity, we call them producer.xml and consumer.xml.
First of all, we will not care about the code that we want to execute within the module, but focus on
the interface. The producer file just containing the port definition looks like this.

<config>
<ports>
<port name="data" direction="out"/>
</ports>
</config>

The consumer file is defined comparable, we have to change port names and direction according to out
needs.

<config>
<ports>
<port name="eatdata" direction="in"/>
</ports>
</config>

Let us for now focus on the Flowvrapp level to connect the co-responding application graph, based
on PortUtil modules. We define one instance that will reason just about the connection between
producer and consumer. For now, we will focus on the implementation of the execute method of
the composite. The full code will be shown later.

void ProducerComsumerExample::execute()
{

FlowvrRunSSH ssh(this);
ssh.setVerbose();
ssh.setParallel();

PortModuleRun *producer
= new PortModuleRun("producer", "producer.xml", ssh, this);

PortModuleRun *consumer
= new PortModuleRun("consumer", "consumer.xml", ssh, this);

link(producer->getPort("data"), consumer->getPort("eatdata"));

PreSignalFilter *ps = addObject<PreSignalFilter>("pf");
link(consumer->getPort("endIt"), ps->getPort("in"));
link(ps->getPort("out"), producer->getPort("beginIt"));

}

That is about it. If we compile the application graph using the normal flowvr facility we get an appli-
cation graph (see Figure 18.3). We could already run the application using FlowVR, but nothing will
happen, as we did not yet define what the entities are about to do. For that, we have to define some
plugins (also called ’handler’) to the flowvr-portbinary.
In the example given, we want to produce some data with the producer. We can see that the producer
does not react on input, it is a source for data as it just writes messages upon every iteration. PortUtils
offers a special base class as a plugin to use for that case, called SourcePortHandler. Our special
handler inherits from that handler and has to define a full virtual function to work. Again we will just
focus on the relevant part, as the full code will be presented later.

// handle message to overload for a SourcePortHandler

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 140

Figure 18.3: FlowVR graph representation shown by flowvr-glgraph.

// @param out the message container to fill
// @param stampsOut the stamps list associated with
// the message / port for sending
// @param allocate the allocator to use to get memory from flowvr
virtual eState handleMessage(MessageWrite &out,

StampList *stampsOut,
Allocator &allocate)

{
Data date = produce();
size_t n;
char *pdate = serialize(date,n);
out.data = allocate.alloc(n);
memcpy(out.data.writeAccess(), pdate, n);

return E_OK;
}

As you can see, this code inside the method is quite close to the original code we devloped for the
standard FlowVR way. Some things to note are as follow.

• There is no reference to a port from which we get the message.

• We already get passed a container (MessageWrite) to be filled.

• We can use the Allocator to claim memory for the message.

• We get, however, the StampList that is used on the output port later that we can use for writing
stamps.

• The code returns E_OK, indicating that everything was all right and this handler is still active in
the next iteration.

In the following, we assume that the handler is compiled into the shared object named
ProducerPlug.so.
Now let us take a look at the co-responding code used for the consumer. We see that the consumer
simply takes a message, decodes a data from it and consumes the message. This means that a plugin
needs an input, but no output port. PortUtils offers a base class called SinkPortHandler for that
pattern. Again, we will just focus on the part of the code that does the work, the whole code is
presented later.

virtual eState handleMessage(const Message &m, const StampList *sl)
{

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 141

Data date = deserialize(m.data.readAccess(),m.date.getSize());
consume(date);
return E_OK;

}

The observations are close to what is already described above, the signature of the handling method
changed a bit. So we get a reference to the message that came in, as well as a pointer to the StampList
associated with the original port that received the message. The consumer code we expect to be
compiled into a shared object file called ConsumePlug.
We now need to hook the handling code into the co-responding XML files. For that we extend the
above given XML files as follows.

<config>
<ports>
<port name="data" direction="out"/>
</ports>
<!-- this is the new code to insert: one for the code-paths to take. -->
<code>
<path name="produce" plugin="produce" out="data"/>
</code>
<!-- ... and one for the plugin that does the job. -->
<plugins>
<plugin name="produce" so="ProducePlug"/>
</plugins>
</config>

We separate the plugin declaration from the code-path declaration. The reason for this is obvious:
a plugin could be used more than once in different code paths. The one path given above is called
’produce’, just as the plugin. This may or may not be done like this. The strings merely have to co-
respond, so that during creation of the code-path a co-responding plugin can be found by the string
given. The plugin needs an attribute called ’so’ that tells PortUtils which shared object to link from
disc. As a simplification for the procedure on different platforms, users must omit the latter part of
the so-name, typically this is .so or .dylib. By naming convention, the shared object that is created
lacks the prefix lib. This is, however, not mandatory. As a rule of thumb, give the whole name
excluding the suffix as parameter to the so attribute. During execution time, this library has to be
found in the dynamic library path of your system16.
The XML file for the consumer is extended just as like the producer file.

<config>
<ports>
<port name="eatdata" direction="in"/>
</ports>
<code>
<path name="consume" plugin="consume" in="eatdata"/>
</code>
<plugins>
<plugin name="consume" so="ConsumePlug"/>
</plugins>
</config>

When we run the application, we see that the modules are now iterating quite fast to exchange messages
and we see messages of output for the producer and consumption for the consumer.
The programmer still can decide to have the serialization code integrated into the plugin, or use it as
an external dependency to both, the producer and consumer plugins. For this example, we have chosen

16We leave out more details on this and come back to deployment later.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 142

the first, by duplicating the class to exchange and separating the serialization code.

18.5.2 Deploying the example

We briefly mentioned that the flowvr-portbinary needs to read an existing portfile in order to func-
tion properly. During application launch-time, the portfiles have to be found in either the local path or
in one of the paths that are defined by the environment variable FLOWVR_PORTFILE_PATH. The latter
closely mimics the behavior that is already used in other FlowVR areas, for exampleflowvr-render,
where the FLOWVR_DATA_PATH for example defines the location of models, shaders and textures.
Additionally, the LD_LIBRARY_PATH has to be adjusted in a way it can find

• all the plugin and service shared objects.

• all relevant 3rd party libraries that are needed to load the plugins.

• all relevant utility libraries, for example serialization codes, that are needed.

There is no need to alter the run-time PATH variable, as the flowvr-portbinary will be part of a
normal FlowVR installation17.

18.5.3 A more complex example

The first example simply showed two participants, one sending and one receiving data. It can be seen
that a re-write using PortUtils is quite straightforward. Obviously, the most benefit can be seen in the
reduction of interfaces that have to be defined on the level of Flowvrapp. We will now make it a bit
more complex by adding parameters. First we will see how this works in the standard way to compare
it against the PortUtils approach.

18.5.3.1 Parameter in the regular approach

Parameters in flowvr are passed from a parameter file or the command line to Flowvrapp which re-
parses the Parameter-run-time structure and creates arguments to augment the command line for
startup. For this example, we will add a simple parameter, that decides on the number of Data objects
that are put into one message. First, we have to modify the main routine of the producer. To simplify
parameter handling, we use the CmdLine class which is part of flowvr already. Again, we will here
just focus on the important details.

[...]
CmdLine line("producer");
bool error=false;
Option<int> num("num", ’n’, "Number of Data instances to put in one message",

false);
// parse the command line and put values into place
if(!line.parse(argc,argv, &error))
{

if(error)
cerr << line.help() << endl;

return 1;
}
// now read off the given argument
int nnum = num.value();
[...]
// change in the wait-loop:

17Unless the application itself has a requirement on the state of the PATH variable.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 143

while (flowvr->wait())
{

// container to store entities
vector<Data> vProduce;
for(size_t n=0; n<nnum; ++n)

vProduce.push_back(produce());
MessageWrite mw;
mw.data = flowvr->alloc(nnum * 256);
// now serialize, assuming a fixed size of 256
// for simplifying the example.
char *dt = mw.data.getWrite<char>();
for(vector< Data >::iterator cit = vProduce.begin();

cit != vProduce.end();
++cit)

{
size_t n;
memcpy(dt, serialize((*cit),n), 256);
dt += 256;

}

// Send message
flowvr->put(&p,mw);

}

The binary now has to be launched with the proper command-line, passing the correct argument. This
command-line argument has to be constructed on the level of Flowvrapp again. The change will affect
the metamoduleproducer.comp code, where we augment the constructor to addParameter()

with a default value of 1.

MetaModuleProducer::MetaModuleProducer(const string& id_)
: MetaModuleFlowvrRunSSH<ModuleProducer>(id_, CmdLine("producer"))
{

setInfo("Launcher for Module-Producer");
addParameter("nb", 1);

}

Note that we change the name of the parameter, as we will have to re-parse the command line in the
configure method. This is the body of the configure method.

void MetaModuleProducer::configure()
{

int n = getParameter<int>("nb");
getRun()->addArg("--num " + toString<int>(n));

}

As you can see here, we rename the Flowvrapp variable nb to the producer argument name num. To
alter the value of nb we have to pass it as a parameter in the command-line when launching FlowVR18.

flowvr -x -L \
-Pproducerconsumerregular/producer:nb=2 \
--complib install/components/libproducerconsumerregular.comp.so \
ProducerConsumerRegular

By doing this, the command-line will be augmented to hold the parameter -num 2 that is passed to
the producer. Things to note here are as follows.

18Or alternatively we add it to a parameter file.

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 144

• we have to give the parameter by name and type in the module code.

• we have to modify the Flowvrappmetamodule representation, declare the parameter and update
the value of the parameter in the configure() method. Here, we have to know the correct
name of the parameter as it is named in the module.

• there is no direct way to distinguish between parameters for the Flowvrapp level and the param-
eters that will be passed to the module. The metamodule code has to take care of that.

18.5.3.2 Parameters with PortUtils

It is clear that the plugin code for the producer has to be changed to respect the parameter. In the
producer code we find a global function called getParameters(). This method is an entry point
to fetch the parameter structure for this plugin.

extern "C" void getParameters(ARGS &args)
{

args["num"] = Parameter("1",
"Number of data entities to produce per iteration",
Parameter::P_NUMBER);

}

Hereby, we declare that this plugin has a parameter num with a default value of 1 that is considered a
number type. In order to use the passed parameter in the module, we have to decode it, and there is a
chance to do that in the constructor of the plugin.

ProducePlugHandler(const PortUtils::ARGS &args)
: SourcePortHandler()
, m_nNum(1)
{

// note that we use a special operator here to
// access the parameter (’args(string)’ instead of ’args[string]’)
m_nNum = args("num").getValue<int>();

}

The handleMessage routine has to be modified to produce now more than 1 Data item per iteration,
similar to the code in the regular example, so we omit it here. All that is left now to do is to pass the
parameter to the flowvr binary upon execution. To do so, the parameter is added to the command line
as follows.

flowvr -x -L \
-Pproducerconsumerportutils/producer:plugins-produce-num=2 \
--complib install/components/libproducerconsumerportutils.comp.so \
ProducerConsumerPortUtils

The parameter is automatically updated and passed to the executable. At this point in the tutorial, we
will explain the structure of the parameter name in more detail. As can be seen above, we do not pass
the parameter num just as this, but pass it as plugins-produce-num. This encoding means that the
parameter named num is meant to be passed to a plugin of a PortUtils module. The name of the
plugin is produce. Note that this is the name we defined in the producer.xml for the plugin. This
routing scheme allows to define parameters for specific plugins, even if different plugins share some
names in their parameter name-space.
PortUtils offers a way to check what parameters can be passed to a module, it can even create a
template parameter file to be filled. The tools that aid in the process are discussed for showing param-
eters (see paragraph 18.5.3.2.1), creating parameters (see paragraph 18.5.3.2.2) and checking actually
passed parameters (see paragraph 18.5.3.2.3).

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 145

18.5.3.2.1 Showing parameter-space (flowvr-pups) The flowvr-port utils parameter show utility
parses a portfile and outputs a string that shows the parameter space.

> pups -p config/producer.xml
[plugins]:
[produce]:
[num]: 1 # Number of data entities to produce per iteration [NUMBER ;

NONE ; DEFAULT ; OPTIONAL]
[services]:
<EMPTY-SUB-CONTAINER>

We can see in this example, that the producer module has 1 plugin, called produce, and no services.
The produce plugin takes one parameter, called num. It is of type NUMBER, the default value of 1 is
shown here and the user does not have to specify it, as there is a default value.

18.5.3.2.2 Creating parameter template files (flowvr-cpff) A template parameter file can be
created with the flowvr-create port file file.

> cpff -p config/producer.xml -c producerconsumerportutils/producer
plugins-produce -- num:
Number of data entities to produce per iteration
TYPE: NUMBER ; MODE = OPTIONAL
producerconsumerportutils/producer:plugins-produce-num=1

The ’-c’ option defines the prefix that is determined by the final hierarchy in the Flowvrapp represen-
tation. That is the prefix string necessary to identify the components in the application hierarchy. For
the example above, that is producerconsumerportutils/producer.

18.5.3.2.3 Checking the parameters passed to an application (flowvr-spl) The flowvr-show
parameter list can be used to parse the argument tree that is constructed on behalf of PortUtils and
passed in the commandline via the argtree argument. The argtree in the command line is base64
encoded and can be found in the flowvr output or log files. The above example passes an argument
tree as follows.

flowvr-run-ssh -v -p ’ localhost ’ flowvr-portbinary \
--portfile producer.xml --idstring producer \
--argtree 122:YyA0IHJvb3QgMyBjIDYgbW9kdWxlI\

DAgYyA3IHBsdWdpbnMgMSBjIDcgcH\
JvZHVjZSAxIHAgMSAtMSAzIDEgMyB\
udW0gMSAyIGMgOCBzZXJ2aWNlcyAwIA==

[...]
> spl -a 122:YyA0IHJvb3QgMyBjIDYgbW9kdWxlIDAg\

YyA3IHBsdWdpbnMgMSBjIDcgcHJvZHVjZSAxIHA\
gMSAtMSAzIDEgMyBudW0gMSAyIGMgOCBzZXJ2aW\
NlcyAwIA==

[module]:
<EMPTY-SUB-CONTAINER>
[plugins]:
[produce]:
[num]: 2 [NUMBER ; NONE ; FILE ; OPTIONAL]

[services]:
<EMPTY-SUB-CONTAINER>

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 146

As can be seen, the produce plugin is passed a num parameter with a value of 2, while services and
the module itself gain no parameter. The paramter was changed on behalf of a parameter file or the
command line.
Things to note are as follows.

• The parameter space is defined by the plugin (or service) only.

• PortUtils offer tool support to check dynamic parameter-space, create configuration files and
check on the parameters that are really passed to the application.

• The parameter space now has a syntax for PortUtil binaries.

• Adding new parameters to the application has no effect on the Flowvrapp layer.

• Flowvrapp components can still add parameters, but they are typically needed to configure the
Flowvrapp behavior only.

18.5.3.3 Using PortUtils services

A service is a passage of code that is related to 3rd party code or, more general, any state that can be
shared between plugins. As it is hard to describe that concept with the regular approach of creating
module in flowvr, we omit this for the discussion to follow. In an abstract way, one can think of a data
structure that is accessed in a sequence of put and get calls insider the wait-loop.
For the example defined so far, we define a DataService that is able to produce() and consume()
data. The PortUtils interface for a service is used by inheritance again.

class DataService : public IServiceLayer
{
public:

// [... portutil stuff snipped here ...]
class Data
{
public:

Data();
char data[256];

};

Data produce();
void consume(Data &);
const char *serialize(const Data &, size_t &n);
Data deserialize(const char *, size_t n);

};

We clearly see that the DataService interface now contains all the code we had duplicated in the
plugins before, including the serialize and deserialize methods. We see also that we decided
to give the DataService the possibility to do both: produce and consume the data. This is for the
sake of simplicity of the example, and in a real scenario could be a different decision.
The plugin code is modified as well. The handler now gets passed a pointer to the DataService to
operate on. This is a play on defines and part of the low-level PortUtils documentation, so we will skip
a detailed presentation here, but only show the modification for the producer.

ProducePlugHandler(DataService *service, const PortUtils::ARGS &args)
: SourcePortHandler()
, m_nNum(1)
, m_service(service) // store service pointer
{

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 147

// [... snip ...]
}

Note that we have to change the linking structure of the project now, as the plugins now depend on
the service directly. The service itself does not see the plugins, so it has just to link 3rd party code if
needed. For this example there is no external code. See the cmake files in the examples to know how
to do the linking properly.
Finally, we modify the portfile structure to reflect for the producer and consumer to be depending
on a service now.

<config>
<ports>
<port name="data" direction="out"/>
</ports>
<code>
<path name="produce" plugin="produce" out="data"/>
</code>
<plugins>
<!-- add a reference to a section of the services, see below... -->
<plugin name="produce" so="ProducePlug" service="dataservice"/>
</plugins>
<services>

<!-- define a service to be loaded from an .so -->
<service name="dataservice" so="DataService"/>

</services>
</config>

The DataService must, just like the plugins, be in the search path of the run-time linker, naturally.
The portfile for the consumer is changed accordingly. If we launch the application now, there is
apparently not any externally notable change in behavior, as only the internal structure of the module
changed completely. There is no constraint on the way that the plugin / service communication is
structured by PortUtils.
The service / plugin pattern can be used to create new modules from existing functionality without
the need to write and deploy more modules. For example a simple filter chain can be produced by
changing the Flowvrapp layer of the given example in the following way.

ProducerConsumerPortUtils::ProducerConsumerPortUtils(const string &id_)
: Composite(id_)
{

addParameter("chain-length", 1);
}

void ProducerConsumerPortUtils::execute()
{

FlowvrRunSSH ssh(this);
ssh.setVerbose();
ssh.setParallel();

PortModuleRun *producer
= new PortModuleRun("producer", "producer.xml", ssh, this);

PortModuleRun *consumer
= new PortModuleRun("consumer", "consumer.xml", ssh, this);

int chain_length = getParameter<int>("chain-length");
if(chain_length < 0)

throw CustomException("Chain-length must be > 0", __FUNCTION_NAME__);

CHAPTER 18. PORTUTILS – SUPPORTING TOOLS FOR MODULE CREATION 148

PortModuleRun *pred = producer;
for(size_t n = 0; n < chain_length; ++n)
{

PortModuleRun *c
= new PortModuleRun("filter"+toString<int>(n),

"consumerproducer.xml",
ssh,
this);

link(pred->getPort("data"), c->getPort("eatdata"));
pred = c;

}

link(pred->getPort("data"), consumer->getPort("eatdata"));

FilterPreSignal *ps = addObject<FilterPreSignal>("pf");
link(consumer->getPort("endIt"), ps->getPort("in"));
link(ps->getPort("out"), producer->getPort("beginIt"));

}

We use the old producer and consumer to build the head and tail of a filter chain. We use a portfile
variant consumerproduct.xml to combine the existing pieces to a new module that has both: an input
as well an an output port.

<config>
<ports>
<port name="eatdata" direction="in"/>
<port name="data" direction="out"/>
</ports>
<code>
<path name="consume" plugin="consume" in="eatdata"/>
<path name="produce" plugin="produce" out="data"/>
</code>
<plugins>
<plugin name="produce" so="ProducePlug" service="dataservice"/>
<plugin name="consume" so="ConsumePlug" service="dataservice"/>
</plugins>
<services>

<service name="dataservice" so="DataService"/>
</services>
</config>

By passing the -Pproducerconsumerportutils:chain-length=10 we can scale the pipeline to
use 10 infix filters of the given structure. They all work on the DataService that is represented by
DataService. It should also be obvious that the modules in the middle share the same state of the
DataService. That mean that any consume of an incoming data can change the state that is reflected
in a subsequent produce. Pipes-and-filter chains can be built quite straightforward with the approach.

Part VI

Developer Manual

149

150

Table of Contents

19 Custom filters 153

19.1 Compiling and loading a Filter . 153

20 FlowVR Run-Time Architecture 154

20.1 The Daemon . 154

20.1.1 Message Handling . 154

20.1.2 Routing Table . 154

20.1.3 Filters and Synchronizers . 155

20.1.4 Regulator . 155

20.1.5 Net . 155

20.2 The Controller . 156

20.3 The Controller and Daemon Interactions . 156

20.4 The Command Language . 156

20.5 Application Deployment . 157

20.5.1 States components . 157

20.5.2 The 4 Deployment Stages . 158

20.5.3 Application launching: Interactive or Batch 159

20.6 Shared Memory . 160

20.6.1 Basics . 160

20.6.2 Allocator . 161

20.6.3 Shared Memory Area . 161

20.6.4 Buffers . 161

20.7 Interprocess communications . 162

20.7.1 MPChannel . 162

20.7.2 Put . 162

20.7.3 Wait . 163

20.7.4 Alloc . 163

20.7.5 Get . 163

TABLE OF CONTENTS 152

This chapter is intended to advanced users that need to program parallel applications (MPI), new filters
or synchronizers, to add new functionalities to the flowvr deamon, etc.

Chapter 19

Custom filters

??

19.1 Compiling and loading a Filter

In FlowVR sources filters code is located in flowvr/flowvrd/src/plugins/filters/ and synchroniz-
ers in flowvr/flowvr-daemon/src/plugins/sync/, while other system plugins are in flowvr/flowvr-
daemon/src/plugins/sys/.
Basic rules when developping a filter or synchronizer:

• The name of filters and synchronizers should always starts with
flowvr.plugins.MYFILTERNAME.cpp.

• They must be compiled individually as dynamic libraries and stored in an accessible directory
path (use the environment variables LD_LIBRARY_PATH or DYLD_LIBRARY_PATH on mac),
in the subdirectory flowvr/plugins directory. For instance the FilterIt plugin is located
in lib/flowvr/plugins/flowvr.plugins.FilterIt.so. You can simply put your plugins in the same
directory. For distributed execution, all plugins should be accessible from each node that runs a
daemon (duplicate them if necessary).

• At compilation, provide access to FlowVR header files located in include.

• At link edition, link to FlowVR libraries, mainly libflowvr-base and libflowvr-plugd,
located in lib.

For compilation and installation, we strongly advice to rely on cmake (see ??) (pkg-config is also
supported).
If this is properly done, at execution each daemon involved in the application will load the re-
quired plugins looking for the libraries flowvr.plugins.FILTERNAME.so in the subdirectory
flowvr/plugins from accessible library paths.
A VOIR make a section about cluster execution FIN

153

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/lib/flowvr/plugins/flowvr.plugins.FilterIt.so

Chapter 20

FlowVR Run-Time Architecture

20.1 The Daemon

The daemon is the main component of the FlowVR architecture. It can be viewed as a collection
of objects and plugins. Some of these objects are automatically loaded (like the commander), others
need a control command (filters). The objects loaded by the FlowVR daemon can be passive objects
(routing table, filters) or threads (regulator, net).
When the daemon starts it:

• sets the daemon internal name ("flowvrd" by default),

• generates the shared memory area, defined by a size and an ID,

• loads a Dispatcher object,

• loads a Commander object,

• loads a Net object (NetTCP by default).

20.1.1 Message Handling

20.1.2 Routing Table

Each daemon owns a unique routing table common to all the FlowVR objects running on the node.
This object contains a list of routes. A route is specified by a source and an action. Several actions can
be linked to the same source and the number of routes for a source is equal to the number of actions to
take when a message comes from this source. A lock is required to protect the completion of control
command like adding or removing a route.
The different actions possible when a message must be parsed are :

• Put a message on the input message queue of a module running on this node.

• Send the message to another node. The source of the message does not change.

Main functions of the routing table :

• bool RoutingTable::addRoute(const string& id, const string& source,

Message::Type msgtype, Action* action) : add a route (a source/action couple) to
the routing table. Note the message type must be specified.

154

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 155

• bool RoutingTable::removeRoute(const string& id) : remove a route.

• std::vector<Action*>* RoutingTable::getAction(string

source,Message::Type msgtype) : send the list of action linked to a source.

• Result RoutingTable::getRouteCount(const string& id) : give the number of
times a specified route has been used. An atomic count linked to the action is used.

20.1.3 Filters and Synchronizers

See programming (see chapter 8) filters and synchronizers.

20.1.4 Regulator

The regulator can be viewed as a ‘box’ encapsulating the modules of the application. This is the object
which deals and interacts with the others components of the FlowVR daemon. By hiding message
handling, access to the shared memory and management of the internal loop of modules, the regulator
makes modules simpler to develop.
Main characteristics :

• One regulator class per application (all modules have the same regulator class).

• One default regulator (flowvr.plugins.Regulator).

• Its is possible to define and load a different regulator.

20.1.5 Net

The Net is the communicating object needed to allow messages passing between different nodes
running a FlowVR daemon. This object is now loaded automatically when starting a daemon. In
the current release the default Net object is based upon the TCP protocol (See flowvrd/src/plugin-
s/sys/flowvr.plugins.NetTCP.cpp).
Another implementation of the Net object can be made. To specify the Net object loaded when startting
a daemon :

flowvrd --network classnameobject

Those currently available are flowvr.plugins.NetMPI and flowvr.plugins.NetMPIm.
(see Figure 9.3)

20.1.5.1 Threading

On one node, the NetTMP implementation relies on two threads per distant node to communicate with.
One for receiving messages and the other for sending messages. There is an additional thread for
receiving connexions from new distants deamons.
NetMPI relies on the same TCP threads to send/receive meta-data about incoming messages, as well
as stamps. Data itself is however sent and received within one single MPI thread, so it merely requires
MPI_THREAD_FUNELED at MPI initialization. (see Figure 9.3)
The second one, NetMPIm, send and recieve all data through MPI, within one sending thread and
sending through another one.

file://Users/raffin/FLOWVR/flowvr-suite-dev/flowvrd/src/plugins/sys/flowvr.plugins.NetTCP.cpp
file://Users/raffin/FLOWVR/flowvr-suite-dev/flowvrd/src/plugins/sys/flowvr.plugins.NetTCP.cpp

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 156

20.1.5.2 Internal

When you create a new route leading to another node, the Net plugin is asked for an Action. It’s a
functor that will get messages to be sent on a peculiar distant node. The Net plugin defines and in-
stanciates the Action, usually one per distant node. The NetMPI does it at initialization, but NetTCP
does it on demand since it spawns a thread on both machines.

20.2 The Controller

The controller is a special module. Its role is to launch and control the application. There is only
one controller for each FlowVR application. The controller directly accesses every FlowVR daemon
involved in the application (and as such, these nodes must be made visible to the Controller). The
controller does not use the routing table. It sends control commands (start a module, add a connection,
pause or stop the application) and receives status reports. The controller fills the gap between the user
and the application.

20.3 The Controller and Daemon Interactions

The interface between the controller and the daemon is the commander. There is exactly one comman-
der per daemon. The commander receives commands from the controller, process the commands and
sends the results to the controller. The commander can reach any FlowVR object present on the same
node.

20.4 The Command Language

The command language is the protocol used for communications between the controller and the dae-
mons. It follows the XML syntax. Complete descriptions can be found via the DTDs.
Commands processed by the controller :

• <addobject class="classname" id="name" > parameters </addobject> : add
an object of the given class and indexed by the id value. Note that when a module is added,
the corresponding class is a regulator (i.e. flowvrd/src/plugins/sys/flowvr.plugins.regulator).
parameters are specific data needed for the initialization of the object (i.e the number of node
for a MPI module or the frequency for a control frequency filter).

• <removeobject id="name" /> : remove the object identified by the given id.

• <addroute id= num><source id= name1 port= PORT messagetype="full"

/><action id= name2 messagetype="full">parameters</action></addroute>

: add a route with the given id. The source tag specifies the object id, the port connected and
the type of message (full or stamps only). Depending on the action id value, parameters
can be :

– if id is equal to the id of a module, a filter or a synchronizer, the parameters will be a port
tag with the name of the destination port of this object.

– if id is equal to the id of the net object (NET by default), then parameters will be a dest
tag (i.e the name of the destination node).

• <removeroute id="name" /> : remove the route corresponding to the given id.

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/flowvrd/src/plugins/sys/flowvr.plugins.regulator

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 157

• <action id=name>actiontotake</action> : send an action to the commander of the
current dest node. action command needs an id variable to specify the object concerned by
this action. The different actions possible are :

– start : start or restart the specified object. Each object created for a FlowVR application
must wait this command before sending any message. This applies when the object is
paused or just created and initialized.

– pause : pause the specified object. If the object is already in pause, it makes nothing. An
object in pause will not send any messages, generated messages are buffered. When the
object is re-starting (after a start), these buffers are emptied before completing any new
message.

– close : to close and destroy the selected object. This command is only used to finish a
FlowVR application.

• <group id="groupname" > : this command contains an action command to process on a
group of objects or a command applied on routes (like removeroute). The value of id corre-
sponds to the namespace where the set of objects is locate. If the namespace is null then all
objects/routes of the application on each node are concerned. When the commander on a node
receives this command, it builds the list of objects concerned by the command and process the
action on each of them. It contributes to reduce the number of commands sent to the comman-
ders.

NOTE : the action tag also contains a messagetype variable. This is the combinaison of the two
values given in this command that determines the type of the connection (stamps only or full).
Two types of message can be sent by the commander to the controller :

• Result

• News

20.5 Application Deployment

20.5.1 States components

Depending on whether the component is a module or a daemon plugin (filter or synchronizer), it passes
through successive statements when the application is launched.

20.5.1.1 Modules

A module is not a plugin loaded by the daemon, it is an entity run in its own separate process. It has
four different states : ’not launched’, ’launched’, ’paused’ and ’started’.

• not launched: the module is not running yet. The process running the module may have been
started but did not contact the deamon yet

• launched: the module is running.

• paused: the module stopped to iterate and is awaiting a signal from the daemon

• started: the module received a regular signal from the daemon, which allows him to start its
iteration loop.

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 158

Figure 20.1: The differents states of a module

20.5.1.2 Plugin states

A plugin running in a thread and loaded by the daemon has three differents states : ’launched’, ’paused’
and ’started’.

• launched: plugin file loaded

• paused: the plugin is stopped and awaiting a signal from the daemon

• started: the plugin receives a regular signal from the daemon, which allows him to make
iteration loop.

Figure 20.2: The differents states of a plugin

20.5.2 The 4 Deployment Stages

An application is deployed in four stages:

1. Starting Modules: retrieve the launching commands from the .run.xml file and execute
them. It starts the metamodules (and its associated modules). Each module can go through the
different states (see Figure 20.1): ’not launched’, ’launched’, ’paused’ and ’started’.

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 159

2. Plugin loading: The daemon receives plugin loading orders from the controller through the
<addobject> commands (stored in the .cmd.xml files). Each plugin can go through thethree
states (see Figure 20.2): ’launched’, ’paused’ and ’started’.

3. Route Creation: Routes, which represent connexions between components, are added to the
routing table of the deamon. The daemon receives route creation orders from the controller
through the <addroute> commands (stored in the .cmd.xml files).

Figure 20.3: The differents states of a route

4. Start Commands: The controller sends start commands to the daemons. The daemon sends
starting orders to its modules and plugins in the order defined by their priorities (from the highest
to lowest).

20.5.3 Application launching: Interactive or Batch

When starting an application flowvr sends commands to the daemons to setup the application. From
the flowvr prompt, the user may also issue his own commands through the console.
Flowvr objects are ordered hierarchically. They follow a tree structure : the root of the tree is the
application name, and branches represent prefixes identifiers objects.
Thanks to this representation, it is possible to apply commands to specific objects, so commands can
be applied to a subtree.

• load : This command allows you to browse the tree components such as the change directory
of Linux, it can apply commands to a set of components that have this prefix. These orders are:
start, pause, stop, addObject etc. ’load’ alone loads all the components from the current position
in the tree. ’load prefix’ followed by a prefix can load all the components on this prefix (if any).
’load ..’ return a shot back in the tree. ’load ../..’ return two shots back in the tree.

• loadDest : This command loads components from a host.

• launchMetamod : This command launches metamodules from the current position in the tree.
If a metamodule is already launched it does nothing

• addRoute : This command adds routes from the current position in the tree. A route is added if
and only if both ends components are already added. If a route is already added it does nothing.

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 160

• addObject : This command adds objects from the current position in the tree and adds at the
same time the road when both ends components are already added (it uses addRoute). If an
object is already added it does nothing.

• launch: This command does in order: "launchMetaMod", "addObject", "addRoute." metamod-
ules, all components and all roads have been added all that remains is to start the application with
the command "start".

• delObject : This command removes objects from the current position in the tree. If an object
is already deleted it does nothing.

• delRoute : This command removes routes from the current position in the tree. If an object is
already deleted it does nothing.

• <dest>hostname</dest> : specify the hostname concerned by the following control com-
mands (until a new dest command is processed). This command is just to set the state of the
controller for the next commands.

• <flush/> : the flush command forces the controller to wait the result message of each com-
mand sended previously before processing other commands. This command can be useful when
debugging the launch of a FlowVR application or for avoiding errors if some commands need
that previous commands be completed.

• <wait duration = time /> : the controller waits time seconds before processing the next
commands.

There are other commands available that can provide information on the application progress :

• pwd : This command shows where you are in the tree.

• getPaused : This command returns components that have been paused.

• getState : This command returns the state of all components.

• route : This command shows routes added.

20.6 Shared Memory

20.6.1 Basics

A key to the performance of FlowVR is the shared memory. Using shared memory allows very fast
communication between two modules residing on the same node. This section present details about
the FlowVR allocators down to some pretty low-level details.
First, The FlowVR daemon allocate one big shared memory segment from the system (eventually
several if both needed and authorized by the user). Then one can use a supplied allocator to obtain
blocks from this shared segment.

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 161

20.6.2 Allocator

The allocator is a singleton through which one allocate shared memory. It’s role is to get access to the
shared memory segments from the system. It is instancied when initializing the first FlowVR module
within a process.
This is the class allowing the user to allocate a high-level flowvr::Buffer, wrapping implementa-
tion details. If none of the shared memory segments can be used to allocate a buffer of the requested
size, the allocator will ask the daemon to create a new shared memory segment. The daemon can either
accept or deny it.

20.6.2.1 Custom Allocator

Furthermore, one can replace the default allocator by a custom one. One you can already find in flowvr
is a pooled allocator giving better performance when allocating block of the very same size.
It can also be use when your block have roughly the same size. To do so, you can allocate blocks of
the same size, larger than you can expect, then use the window constructor to prune the overflow.

20.6.2.2 Daemon Allocator

This specialized allocator, only used by the FlowVR daemon itself is responsible for allocating shared
memory segments from the system. It is instancied within the daemon, right after the command line
parsing, creating the main memory segment in which will live the daemon header.
It’s also responsible of the allocation of new memory segments upon request, though it decides if it
should either do it or not depending on the given command line options.

20.6.3 Shared Memory Area

The shared memory area don’t have to be manipulated by the FlowVR user. It gives an interface for
allocating 8 bytes aligned blocks1 within one shared memory segment.
In the memory segment lives a chained list of free chunks from which you allocate. Both them and the
allocated blocks are preceeded by a small header describing them. The header of the free chunk also
contains the offest of the following chunk whilst the header of an allocated block contains a reference
counter.
Chunks are stored as a double chained list. Each chunk header remembers the previous and next chunk
while the area header keeps track of the first one. The list is ordered by the offset of the chunks within
the memory segment.
When allocating, you lock the entire chunk list then search for a chunk large bigger than the requested
size. This search is performed from both ends at once and the very first suitable chunk is used.

20.6.4 Buffers

This class wraps the memory block allocated by the shared memory area, notably performing the
reference counting. It actually contains a vector of those memory blocks, each block beeing reference
counted separatly, and freed using the allocator it as been allocated with.

1not quite a buffer yet

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 162

Daemon Header Area Header Free Chunk

H

Allocated block

H

Allocate in the first chunk big enough

Merge chunks when freeing a buffer

When left space is too small for a new chunk, hide it in the block

HH

HH

HH

HH

Alloc

Free

Alloc

H

H

HH

HH

H H

H H

HH

H

H H

H

HH H

HH

Free

H HH

Hidden bytes won't be freed when next buffer is freed

H

HH

Free

H HH

Hidden bytes are freed when its buffer is freed

Figure 20.4: Illustration of the allocation and freeing of a block within a shared memory area.

Since those buffer can be segmented one can easily concatenate huge buffers while avoiding costly
memory copies but add some burden when manipulating them. However, the segmentation is always
introduced by the user (through modules and filters), and we furthermore supply way of accessing a
buffer regardless its eventual segmentation (see section 17.2).

20.7 Interprocess communications

This section explains some details about the way processes within a FlowVR node, and pecularily
modules, communicate with each other.

20.7.1 MPChannel

Within a single node, processes communicate with each other almost exclusively using an MPChannel.
This object living in the shared memory is a one-way FIFO communication channel. It is implemented
as a fixed-length file using a lock and two conditions from the pthread library. Its maximum capacity
is fixed once instancied, the writer process push messages on one end while the reader pop them from
the other.

20.7.2 Put

The put command, when executed inside a module, send the message through an MPChannel to the
Regulator associated with the module. The Regulator performs passive wait on the channel and
processes incoming commands sequencially, delivering the message to the destination module if it’s
local, or to the Net object, using the Dispatcher object as a mere abstraction layer in both cases.

CHAPTER 20. FLOWVR RUN-TIME ARCHITECTURE 163

20.7.3 Wait

In the fashion of the put command, the wait one communicate with the Regulator but then waits
for an answer comming through a second MPchannel (going from the Regulator to the Module).
This means there is a cost even when there is no blocking port since you always perform four locks
during the call.
Furthermore, since (wait/put/close) commands are serialized within the Regulator, a wait need
all preceeding commands (notably put commands) to be performed by the Regulator. This is one
reason why one should never put costly operations either in a filter nor a synchronizer, whose work is
serialized by the Regulator as it processes the put command.

20.7.4 Alloc

Buffer allocation doesn’t need inter-process communication but it uses the shared memory area,
which accessible from every FlowVR module on the node. Data race are avoided by locking the entire
memory area using a single mutex living in the area header. This enforces the serialization of both
allocation et freeing of the shared memory blocks.

20.7.5 Get

This command is different than the previous commands since it doesn’t involve any inter-process
communication, not even a lock.

Part VII

MISC

164

165

20.7.6 Module Name

By default the module name is set automatically and the user does not have to worry about the nam-
ing mechanism. We detail below how this mechanism behaves in case the user needs to control
module naming, necessary for instance when using a non supported command for module launching
(flowvr-run-ssh and mpirun are currently supported A VOIR link FIN).
The name of a module can be set through different ways:

• FLOWVR_MODNAME: set the module name from the value of this environement variable if set.

• When calling initModule (see subsection 6.2.1).

This may be useful to integrate a number in the name of modules belonging to the same group
(toto/0,toto/1,). FlowVR provides such mechanism, it is called the parallel interface (in-
clude/flowvr/parallel.h). When this mechanism is activated, the affected modules have their name
suffixed with a number (using a / separator). There are two ways to set this number:

• When executing initModule, the module detects the FLOWVR_RANK (the module rank in the
group) and FLOWVR_NBPROC (the total number of modules in the group) environment variables.
It thus automatically uses the value of FLOWVR_RANK as suffix. The flowvr-run-ssh utility
set such values when launching the same instance of a module several times (see the -p option)
A VOIR a prÃ c©ciser FIN

• void Parallel::init(int rank, int nbProc): This method needs to be called before
initModule. It sets the module rank number and the total number of module in the group
through the rank and nbProc parameters . Then rank is used as a suffix by initModule.
This enables to control module numbering from the module code. For instance the mpirun

launcher command from MPI A VOIR un lien vers openmpi FIN numbers the various pro-
cesses it starts. If these processes are also FlowVR modules, they can use the rank set by
MPI (retreived calling MPI_comm_rank as a name suffix. The fluid example works this way
(share/flowvr/examples/fluid/modules/src/fluid.cpp).

The parallel interface also provides the following methods that can be called in a module:

• bool Parallel::isInitialized(): Return true if the parallel interface is initialized.
Initialized by initModule if not done before.

• bool Parallel::isParalle(): Return true if the parallel Interface is activated.

• bool Parallel::getRank(): Return the module rank (0 if parallel interface not activated).

• bool Parallel::getNbProc(): Return the total number of modules in the group (1 if par-
allel interface not activated).

• bool Parallel::close(): close the parallel interface.

FLOWVR_MODNAME, FLOWVR_RANK and FLOWVR_NBPROC are automatically propagated by the
flowvr-run-ssh A VOIR link FIN module launcher. A VOIR a completer quand on aura

ecrit une section sur les support des commandes de lancement FIN
A VOIR Put here everything you think it is important to include in the docuemention, but that you do not

know where to put FIN
A VOIR ajouter de la doc sur: ou placer les codes (binaires des modules par exemple) et les variables

d’environnement associÃ c©es pour leur accessibilitÃ c© (en mode cluster en particulier) parler de la ligne de
commande ou placer les sources et les exÃ c©cutables des filtres FIN
Here is the list of source codes a user may find useful to inspect:

file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/parallel.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/include/flowvr/parallel.h
file://Users/raffin/FLOWVR/flowvr-suite-dev/install-suite/share/flowvr/examples/fluid/modules/src/fluid.cpp

166

• Examples of applications: share/flowvr/examples,

• The various components provided with FlowVR: include/flowvr/app/components/.

• The source code of filters and synchronizers released with FlowVR: flowvrd/src/plugins/sync
and flowvrd/src/plugins/filters,

20.7.7 The Application Controller

The control of the execution of a FlowVR application is managed by one special module called a con-
troller, automatically loaded when launching the application. The controller is in charge of launching
the metamodules and setting the network.
The controller first starts the application’s metamodules. Once the modules launched, they register to
their local daemon that sends an acknowledgment to the controller. Then, the controller sends to each
daemon the list of plugins to load required to implement the FlowVR network.
A VOIR bruno 2010: still valid but to detailled for user manual. FIN

20.8 The Module API Factory: registerModule

static ModuleAPI* ModuleAPIFactory::registerModule(std::string instancename=
std::string(""))}

This method will register a new module and return the appropriate module API implementation. The
module gets the name composed of the concatenation of:

• the name returned by the FLOWVR_MODNAME environment variable (see ??),

• the / separator,

• the value of the instancename parameter.

Most of the time the instancename parameter can be omitted, and the module gets the name returned
by FLOWVR_MODNAME.

20.8.0.1 init

int ModuleAPI::init(std::vector<Port*>& ports)

This method initializes the module and its ports. This method must be called once before entering the
loop. The list of ports used by the module can not be modified after this call. No other method of the
module API should be called before calling init.

20.8.1 Module Binary and Launching Commands

We first need to explain how a module is started. One goal when designing the module API was to be
as little intrusive as possible to easily turn any piece of code into a FlowVR module.
Thus the main way to transmit data to a module is through the argument of its command line or through
environment variables.
Each time flowvr-run-ssh starts a module it sets several environment variables that need to be
propagated

167

• FLOWVR_MODNAME: the modules’s name inside the application graph.

• FLOWVR_RANK and FLOWVR_NBPROC: rank is used to identify multiple instances of the process
running in parallel.

• FLOWVR_PARENT: the PID of the process to attach to. (i.e. the daemon)

These environment variables are automatically calculated by the metamodule at launch time.
As said before (see ??), the flowvr executable parses the description of your application’s network,
and produces intermediate files, when called without the "-x" option.
Those files are named as follows :

• applicationName.net.xml : An xml file describing the network of the application : the modules,
filters, synchronisers, and how they are connected together. You can use the flowvr-glgraph
utility to view this file as a graph.

• applicationName.cmd.xml : An xml file containing internal commands for the flowvr deamon,
read at launch time.

• applicationName.run.xml : An xml file containing the launch commands for every module.
By default, the launcher is the executable flowvr-run-ssh. It uses an ssh connection to launch
distant and local executables. (This is why you should allow incoming ssh connections on your
machine for flowvr to run properly). The launcher can also be mpirun.

• applicationName.adl.out.xml : An xml file reflecting the whole architecture of your application
(useful to inspect for instance to check the actual parameter values). You can use the flowvr-
glgraph utility to view this file as a graph.

Now if you specify the "-x", commands in the applicationName.run.xml are parsed, and executed
using the flowvr-run-ssh (see subsection 20.8.2) script. Here are commands generated for the Primes
example:

<commands>
<run metamoduleid="primes/capture/body">flowvr-run-ssh -v -p -e DISPLAY

:0 ’ host1 ’ capture </run>
<run metamoduleid="primes/visu/body">flowvr-run-ssh -v -p -e DISPLAY :0

’ host1 ’ visu </run>
<run metamoduleid="primes/compute/body">flowvr-run-ssh -v -p ’ host1

host2 host3 host4 ’ compute </run>
</commands>

At runtime, those commands become:

Command params: -v -e DISPLAY ":0" -e FLOWVR_PARENT "/oneida/xxxx/read:P"
-e FLOWVR_MODNAME "primes/capture/body" -e FLOWVR_NBPROC "1" -e
FLOWVR_RANK 0

Command params: -v -e DISPLAY ":0" -e FLOWVR_PARENT "/oneida/xxxx/read:P"
-e FLOWVR_MODNAME "primes/visu/body" -e FLOWVR_NBPROC "1" -e
FLOWVR_RANK 0

Command params: -v -e FLOWVR_PARENT "/oneida/xxxx/read:P" -e
FLOWVR_MODNAME "primes/compute/body" -e FLOWVR_NBPROC "4" -e
FLOWVR_RANK 0

Command params: -v -e FLOWVR_PARENT "/oneida/xxxx/read:P" -e
FLOWVR_MODNAME "primes/compute/body" -e FLOWVR_NBPROC "4" -e
FLOWVR_RANK 1

Command params: -v -e FLOWVR_PARENT "/oneida/xxxx/read:P" -e
FLOWVR_MODNAME "primes/compute/body" -e FLOWVR_NBPROC "4" -e
FLOWVR_RANK 2

168

Command params: -v -e FLOWVR_PARENT "/oneida/xxxx/read:P" -e
FLOWVR_MODNAME "primes/compute/body" -e FLOWVR_NBPROC "4" -e
FLOWVR_RANK 3

Once it has been launched, each module connects to the daemon using the FLOWVR_PARENT variable,
which was previously set by the launcher.
A VOIR FLOWVR_PWD FLOWVR_PREFIX FIN

Then, the flowvr-telnet script parses the applicationName.cmd.xml file and issues commands to
the concerned daemons. (start/stop/pause/addobject ... etc)

20.8.2 flowvr-run-ssh: a Simple Module Launcher

Flowvr-run-ssh is the default FlowVR launcher. It connects to given distant machines, set environ-
ment variables, and launches the binary it has been given as argument.

Usage: flowvr-run-ssh [-v] [--path path] [-l login] [-e VAR VALUE] [-x VAR
] [-s] [-p] [-m] [-b] hostlist command

-v : verbose
--path path : changes to path before executing the command.
-d path : (DEPRECATED) changes to path before executing the command.
-e VAR VALUE : sets the variable VAR to VALUE in the environment of the

command.
-x VAR : propagates the variable VAR in the environment of the

command.
-s : does not set FLOWVR_RANK and FLOWVR_NBPROC (sequential mode)

[default if one host].
-p : sets FLOWVR_RANK and FLOWVR_NBPROC (parallel mode) [default

if several hosts].
-l login : specifies the user to log in as on the remote machine.
-m : disable FLOWVR_PLATFORM substitution in path.
-b : run in background.

A VOIR Put here everything you think is important to include in the documentation, but that you do not know

where to put FIN

Acknowledgment

The development of FlowVR has been partly funded by the RNTL project GEOBENCH, the
ANR grant ANR-07-CIS-003 (FVNANO project) and the ARN grant ANR-06-MDCA-003 (DALIA
project).

169

	I Getting Started
	Setting up your environment
	Using an existing application
	Compiling and installing
	Generating the application network
	Local execution
	Distributed Execution
	Distributed Execution Over High-Performance Networks
	Insitu
	Example
	Synchronisation of the insitu modules
	Visualisation on the dedicated core

	II Overview
	Application Model
	Module
	Filter
	Connection

	Typical uses
	Usual synchronization policies
	Data-Driven Policy
	Demand-Driven Policy
	Data-Driven Policy with Frequency Constraint
	Asynchronism Based on Resampling
	Gathering Data from Multiple Producers
	Component Mapping on Hosts

	Component assembly principles
	Module-to-Module Connection
	Connection Cycles
	Connection Fan-out
	Filters
	Filters versus Modules
	Example of Filter Uses

	Dataflow Synchronization Modes
	FIFO mode
	Sampling (or Greedy) Mode
	Frequency Synchronizer
	Other Synchronization Modes

	Host Assignment for Network Objects

	III User Manual
	Flowvr-appy
	Step-by-step tutorial
	Hierarchical Components
	Component objects
	Component Programming
	Component Naming Convention
	Primitive constructor
	Composite constructor
	addPort
	link
	FlowvrApp object

	Application Compilation
	Application Processing: flowvr
	Launching commands
	Modules
	MPIModules
	Filters and synchronizers
	Core execution preference

	Standard filters and modules

	Modules
	Launching Commands
	Module Programming
	Interface
	initModule
	wait
	get
	put
	getStatus
	close
	alloc
	abort

	Predefined Input and Output Ports
	User Defined Ports
	Port Vector
	Output Port
	Input Port
	Example

	Event Ports
	Probing Ports State

	Messages, Stamps and Data Buffers
	Messages
	Message: FULL, STAMP, Null, Empty, Valid ?

	Data Buffers
	Buffer
	Example
	BufferPool: Reusing Old Buffers for Better Performance
	Constant Size Buffers
	Bounded Size Buffers
	Example

	Chunks: Structuring Message Content
	Chunk for Keyboard and Mouse Events

	Stamps
	Predefined Stamps
	Stamp List Specification
	User Defined Stamps
	Adding a new Stamp
	Reading a Stamp Value

	Stamps Forwarding
	Forwarding a modified stamplist

	Filters and Synchronizers
	Inheritance and Plugin Loader
	Filter Callbacks
	Dispatcher
	init
	newStampListSpecification
	newMessageNotification

	Ports: Input and Output Message Queues
	Port Vectors
	Messages
	Input Message Queues
	Output Message Queues

	Standard filters
	Standard synchronizers

	Application Execution
	The FlowVR Daemon: flowvrd
	Launching the FlowVR Daemon
	The FlowVR Daemon Command Language
	Application Launching
	Start/Pause/Stop
	flowvr-kill

	Run-time Environment
	Application Deployment, Execution and Debugging
	Using an MPI network layer
	NetMPI vs NetMPIm plugins
	NetMPI and NetMPIm plugins Work with

	Running flowvrd with MPI
	Enabling top output with MPI

	Language bindings
	Python Module Programming
	Interface
	initModule
	wait
	get
	put
	getStatus
	close
	alloc

	User Defined Ports
	Port Vector
	Output Port
	Input Port
	Example

	Event Ports
	Probing Ports State
	Running modules
	Messages and buffers
	Stamps
	Data
	Python ``chunks'': converting binary data to/from strings

	IV Examples
	Primes
	Application Instantiation and Execution
	Directory Structure
	Compiling FlowVR modules
	Environment Variables
	Modules
	Module implementation
	The event processing loop

	Component Assembly
	Without synchronization
	Synchronization basics
	Stamps
	Controlling the module's output rate
	The presignal filter

	Synchronizing multiple inputs
	An example
	Synchronizers
	Further reading

	Composites
	Grouping primitives
	The greedy

	Multiplying compute modules
	Running more instances
	Merging results
	On multiple hosts
	Tree merge

	Fluid
	Compilation
	Instantiation and Execution
	Fluid (sequential)
	FluidMPI (parallel)

	The Simulation Module
	Module and Metamodule Components
	The Code Module

	The visualization and Interaction Module
	The Event Capture and Visualization Code
	The Event Capture and Visualization Modules and Metamodules Components

	Component Assembly
	Sequential Fluid
	Parallel Fluid

	V Utilities
	Flowvr-glgraph: Interactive Graph Visualization
	Introduction
	Network-based .net.xml
	Hierarchical .adl.out.xml

	Launching
	Component representation
	.net.xml
	.adl.out.xml
	Composite
	Composite ports
	Module (primitive module)
	Filter
	Connection
	Stamp connection

	Shared functionalities
	The toolbar
	The view
	Normal Mode
	Selection Mode (.net.xml)

	The lists
	Normal Mode
	Selection Mode (.net.xml)

	Searching by Regular Expressions
	Clustered Layout (.net.xml)

	Trace Capture and Visualization
	Trace Capture and Code Instrumentation
	FlowVR Defined Events
	User Defined Events
	Traces for Filters and Synchronizers
	Launching Trace Capture
	Generating the network
	Command Details

	Trace Visualization
	User Interface commands
	Graphical Representation description
	Customizing Graphical Representation
	Visualization in flowvr-glgraph

	FlowVR Template Library
	Overview
	Vectors
	Matrices
	Quaternions
	Command Line Parsing
	Declaring Options
	Parsing the Command Line
	Retrieving Values

	Other Tools
	flowvr-graph: static network images
	flowvr-shmdump: Dump Shared Memory Content
	flowvr-run-ssh: a Simple Module Launcher
	 flowvr-fread and flowvr-fwrite Modules: Save/Replay Messages
	 flowvr-joypad Module

	Developping Tools
	File Searching in Path
	Basic search
	Advanced search
	Construction of a FilePath
	Addition of a Path
	File Search

	Stream Buffer accessors
	std::streambuf
	std::stream, std::istream, std::ostream
	Streambuf Usage examples
	streams Usage examples

	PortUtils – supporting tools for module creation
	Motivation
	Integration of custom code with FlowVR
	An example problem.
	Defining module level.
	Defining network level.

	Shortcomings and sources of error
	PortUtils – Overview
	Using PortUtils
	Pickung up the example again
	Deploying the example
	A more complex example
	Parameter in the regular approach
	Parameters with PortUtils
	Showing parameter-space (flowvr-pups)
	Creating parameter template files (flowvr-cpff)
	Checking the parameters passed to an application (flowvr-spl)

	Using PortUtils services

	VI Developer Manual
	Custom filters
	Compiling and loading a Filter

	FlowVR Run-Time Architecture
	The Daemon
	Message Handling
	Routing Table
	Filters and Synchronizers
	Regulator
	Net
	Threading
	Internal

	The Controller
	The Controller and Daemon Interactions
	The Command Language
	Application Deployment
	States components
	Modules
	Plugin states

	The 4 Deployment Stages
	Application launching: Interactive or Batch

	Shared Memory
	Basics
	Allocator
	Custom Allocator
	Daemon Allocator

	Shared Memory Area
	Buffers

	Interprocess communications
	MPChannel
	Put
	Wait
	Alloc
	Get

	VII MISC
	Module Name
	The Application Controller
	The Module API Factory: registerModule
	init
	Module Binary and Launching Commands
	flowvr-run-ssh: a Simple Module Launcher

